

The INL is a U.S. Department of Energy National Laboratory
operated by Battelle Energy Alliance

INL/EXT-13-29568

RELAP5-3D Restart and
Backup Verification
Testing

George L Mesina

September 2013

DISCLAIMER

This information was prepared as an account of work sponsored by an
agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

INL/EXT-13-29568

RELAP5-3D Restart and Backup Verification Testing

George L Mesina

September 201

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Naval Reactors

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

 iv

 v

EXECUTIVE SUMMARY

Existing testing methodology for RELAP5-3D employs a set of test cases collected over two decades
to test a variety of code features and run on a Linux or Windows platform. However, this set has
numerous deficiencies in terms of code coverage, detail of comparison, running time, and testing fidelity
of RELAP5-3D restart and backup capabilities.

The test suite covers less than three quarters of the lines of code in the relap directory and just over
half those in the environmental library. Even in terms of code features, many are not covered. Moreover,
the test set runs many problems long past the point necessary to test the relevant features. It requires
standard problems to run to completion. This is unnecessary for features can be tested in a short-running
problem. For example, many trips and controls can be tested in the first few timesteps, as can a number of
fluid flow options.

The testing system is also inaccurate. For the past decade, the diffem script has been the primary tool
for checking that printouts from two different RELAP5-3D executables agree. This tool compares two
output files to verify that all characters are the same except for those relating to date, time and a few other
excluded items. The variable values printed on the output file are accurate to no more than eight decimal
places. Therefore, calculations with errors in decimal places beyond those printed remain undetected.

Finally, fidelity of restart is not tested except in the PVM sub-suite and backup is not specifically
tested at all. When a restart is made from any midway point of the base-case transient, the restart must
produce the same values. When a backup condition occurs, the code repeats advancements with the same
timestep. A perfect backup can be tested by forcing RELAP5 to perform a backup by falsely setting a
backup condition flag at a user-specified-time. Comparison of the calculations of that run and those
produced by the same input w/o the spurious condition should be identical. Backup testing is more
difficult than the other kinds of testing described above and it requires additional coding to implement.

The testing system constructed and described in this document resolves all of these issues. A matrix
of test features and short-running cases that exercise them is presented. A small information file that
contains sufficient data to verify calculations to the last decimal place and bit is produced. This testing
system is used to test base cases (called null testing) as well as restart and backup cases. The
programming that implements these new capabilities is presented.

 vi

 vii

CONTENTS

EXECUTIVE SUMMARY .. v

ACRONYMS .. x

1. INTRODUCTION .. 1

1.1 Statistical Statement of the Testing System ... 3

1.2 The α-Significance of the Test ... 4

1.3 Power of the Testing System ... 6

1.4 References .. 8

2. VERIFICATION FILE ... 9

2.1 Functional Requirements for the Verification File .. 10

2.2 Verification File Control .. 11
2.2.1 199 Card Control ... 11
2.2.2 Attribute 3: On/Off .. 11
2.2.3 Attribute 5: Start/End Time ... 11
2.2.4 Attribute 4: Input Naming of Verification File ... 12
2.2.5 Attribute 6: Dump on Final Step ... 13

2.3 Verification File Operations beyond Original Workscope .. 14

2.4 Verification File Contents .. 15
2.4.1 Format of the Verification File ... 15
2.4.2 Code and Computer Identifiers ... 15
2.4.3 Execution Time ... 16
2.4.4 Norms of Calculated Quantities .. 16
2.4.5 Verification File of Manageable Size ... 17
2.4.6 Sample Verification File ... 18

2.5 Analysis of Verification File Sufficiency .. 19
2.5.1 Primary Variables of the TH equations, Rows 1-8 ... 19
2.5.2 Heat Structure Temperatures and Fluxes, Rows 12-13 ... 19
2.5.3 TH Equation RHS and Solution Vector Norms, Rows 9-10 20
2.5.4 Sum of trip and control variables, Rows 15-16 ... 20
2.5.5 Timestep and Error sums, Rows 11, 14 .. 20
2.5.6 Sum of key output-only quantities, Rows 17-18 ... 20

2.6 Debugging with the Verification File .. 22

2.7 References .. 23

3. NULL TESTING .. 24

3.1 Functional Requirements ... 25

3.2 Features and Cases Matrix ... 26
3.2.1 RELAP5-3D Features ... 26
3.2.2 Input Decks ... 26
3.2.3 Tabulation of the Verification Suite .. 26

3.3 Test Cases .. 33

3.4 Verification Directory and Makefiles .. 36

3.5 Comparison on Identical Machines .. 37

 viii

3.6 References .. 39

4. RESTART TESTING ... 40

4.1 Background .. 41

4.2 Functional Requirements ... 42

4.3 Restart Testing and Naming ... 43

4.4 Restart User Problems Summary ... 45

4.5 References .. 46

5. Backup Testing ... 47

5.1 Background .. 48
5.1.1 Noncondensable Gas Backup Summary ... 48
5.1.2 Velocity Flip-flop Backup Summary .. 48
5.1.3 Water Packing Backup Summary ... 49
5.1.4 Value of Code Backup .. 49

5.2 Functional Requirements ... 51

5.3 Conceptual Intricacies of Backup Testing ... 52

5.4 Backup Code Implementation .. 54
5.4.1 Transient Coding ... 54
5.4.2 Backup Input Coding .. 54

5.5 Input Decks for Backup Testing .. 56

5.6 Backup Testing .. 57

5.7 References .. 59

6. SOURCE CODE .. 60

6.1 Module VERIFYMOD .. 61

6.2 RDEBUG Subroutine ... 66

6.3 Subroutine VERFSUM .. 72

6.4 Subroutine VERFBACKUP ... 79

6.5 Minor Modifications of Existing Subroutines .. 80
6.5.1 Subroutine DTSTEP Modifications .. 80
6.5.2 Subroutine HYDRO Modifications .. 80
6.5.3 Subroutine IEDIT Modifications .. 81
6.5.4 Subroutine INITDATA Modifications .. 81
6.5.5 Subroutine RTSC Modifications ... 82
6.5.6 Subroutine SYSSOL Modifications .. 82
6.5.7 Subroutine TRAN Modifications .. 82
6.5.8 Subroutines UFILFMOD and UFILSMOD .. 83

 ix

TABLES

Table 1.0.1 Categories of Testing ... 2

Table 1.1.1. Hypothesis Testing Table for Test (1.1.5) ... 3

Table 2.1.1 Attributes of a Verification File. .. 10

Table 2.2.1 Control Tasks of a Verification File. ... 11

Table 2.2.3. Naming the Verification File. .. 12

Table 2.4.1. Content Attributes of a Verification File. .. 15

Table 2.4.2. Quantities on Verification File. ... 16

Table 2.6.1. Debugging Use of the Verification File. .. 22

Table 3.1.1. Features-Cases Matrix – Hydrodynamic Components .. 27

Table 3.1.2. Features-Cases Matrix – Component Control & Specification 28

Table 3.1.3. Features-Cases Matrix – Heat Transfer Specification ... 29

Table 3.1.4. Features-Cases Matrix – Tables and Kinetics .. 30

Table 3.1.6. Features-Cases Matrix – Code Operation Control & Misc. .. 32

Table 3.2.1. Input file descriptions. ... 33

Table 4.1.1. Restart Suite Naming Convention .. 44

Table 4.3.1. Summary of High Priority Restart User Problems ... 45

Table 5.3.1. 199 Card Condition Keywords for Backup ... 55

Table 5.3.2. Values of variable verfaction. .. 55

Table 5.4.1. Backup Suite Naming Convention .. 56

Table 5.5.1. Summary of High Priority Backup User Problems... 57

FIGURES
Figure 2.4.6. Verification File with 2 Cases for Edward’s Pipe .. 18

Figure 3.5.1. Verification File for Edward’s Pipe from INL Enclave Computer FBUILD 37

Figure 3.5.2. Verification File for Edward’s Pipe from INL Enclave Computer FBUILD2 38

 x

ACRONYMS

BC Boundary Conditions

CCFL Counter Current Flow Limiting

CHF Critical Heat Flux

CPU Central Processor Unit

DA Developmental Assessment

ECC Emergency Core Coolant

HSE Hydro Static Equilibrium

HTC Heat Transfer Coefficient

INL Idaho National Laboratory

INEEL Idaho National Engineering and Environmental Laboratory

KB Kilobyte

LOCA Loss Of Coolant Accidents

MB Megabyte

PVM Parallel Virtual Machine

RELAP Reactor Excursion and Leak Analysis Package

RHS Right Hand Side

SDIVD Software Development, Implementation and Verification Document

TH Thermal Hydraulics

V&V Verification and Validation

 xi

SYMBOLS

English

b RHS of Δp Linear System

di Probability of detecting differences

H0 Null Hypothesis

H1 Alternative Hypothesis

N Number of test cases

P Probability function

S Size of the verification file

ti Number of timesteps if the ith input case

T Temperature

Tr Trip

UP User-reported Problem

uf Liquid internal energy

ug Gas internal energy

Vf Velocity of the Liquid (Fluid)

Vg Velocity of the Gas

X Random Variable for the Hypothesis Test that two runs are identical

Xa Noncondensable Quality

Xi Random Variable for Test Case i, the ith input deck.

Y Control Variable

3D Three dimensional

Greek

α significance level of a hypothesis test

αg Void fraction of gas

β Probability of committing Type II error in a hypothesis test

Δp Pressure Drop

Δt Timestep for Hydrodynamic Advancement

Δtkin Timestep for Neutron Kinetics Advancement

ε Sum of RELAP5-3d estimate errors

φ Neutron Flux

b Density of Boron

 xii

 1

1. INTRODUCTION
The state-of-the-art nuclear reactor system safety analysis computer program developed at the Idaho

National Laboratory (INL), RELAP5-3D1-1, continues to adapt to changes in computer hardware and
software and to develop to meet the ever-expanding needs of the nuclear industry. To continue at the
forefront, code testing must evolve with both code and industry developments.

A Developmental Assessment1-2, a form of validation testing, was performed in 1990 and a draft
report written. Thereafter however, no element of Verification and Validation testing was performed for
many years. In the late 1990s, verification testing was checking that all problems in the test suite ran
without error messages to completion on UNIX computer platforms of five different vendors. In the early
2000s, the diffem script1-3 was developed to check that output generated by two different code versions
were character-for-character identical, except for date, time-stamp, CPU run time and anything else
unrelated to actual calculations.

However, the diffem script was not the final authority. A comparison between output files was also
deemed acceptable if the differences diffem found were justified by expected changes due to bug fixes or
code development. If all output files compared acceptably between two versions, the new version was
called acceptable. If a code version passed the limited internal test set comparison, it was released
internally. Additional tests were run before the code was released externally.

The diffem approach has limitations. Typical 64-bit floating point variables in the code have values
good to about 14 decimal places. In the printed output file, only to 5-8 decimal places are represented.
Differences in RELAP5-3D calculations beyond eight decimal places cannot be detected by comparing
two such files. Some code bugs, therefore, went undetected in RELAP5-3D product testing. Bugs were
found by users through running transients of sufficient duration to expose accumulated differences in the
printed output file.

In 2010, the “-stat” command line option was added to create a file of statistics to record other useful
data about a run. Comparison of two stat files provides additional verification, but it is insufficient to
guarantee all differences in the calculations between two code versions are discovered. In order to do that,
information that is accurate to the last bit of the calculated floating point numbers must be recorded. Only
then can comparisons that are 100% certain be made.

Another inadequacy in the installation test procedure is the test cases that comprise it. The RELAP5-
3D installation test suite is a collection of problems that run automatically when the code is built on a
computer platform. Although the test suite has increased multifold in the past two decades, coverage
analysis shows that over 25% of the lines of code in the RELAP5-3D source code directory and over 40%
of those in the environmental library are not exercised by the test suite. In fact, not all of the important
code features are tested.

Most test cases in the test suite are run through transients far longer than necessary for testing the
specific features being checked. Most features can be tested in short-running test cases. Examples include
most trips and controls. A larger collection of shorter-running problems would be able to test more
important features in less time.

Finally, fidelity of code restarts and backups is not tested at all. Restart cases are run, however with
the exception of the PVM installation problems, test cases do not check that a given problem run
completion and its restart from an intermediate restart record produce the same calculations.

A backup is quite different from a restart. In a backup, the code repeats advancements with the same
or smaller timestep. There are two reasons for this. The first is that the code detects that truncation errors
on a given advancement are too large. The second occurs when, partway through an advancement, the
code recognizes a condition under which a slight modification of the system of equations would have

 2

produced a better approximation of reality. In the former situation, a repeat with a smaller timestep is
needed, while in the latter, the repeat uses the same size timestep.

Thus there are three categories of testing listed in Table 1.0.1, null testing, restart testing, and backup
testing.

No. Category Description

1 Null testing Check that two code versions produce the same calculations

2 Restart testing Check that a restarted run produces the same calculations as the original run

3 Backup testing Check that the code still produces the same calculations with a forced backup

Table 1.0.1 Categories of Testing

Recently a new testing procedure has been developed at another National Laboratory1-4. This
procedure addresses all three of these areas. Development of similar testing procedures for RELAP5-3D
will produce a much more robust and reliable code.

As with all testing, the simple result it produces must be interpreted. If differences are reported, they
must be examined. If they result from code maintenance, development of a new feature, or the fixing of a
previously reported error, the differences in calculations may or may not mean an error has been
discovered.

The remainder of Section 1 covers the theory of testing in these three categories. Section 2 details the
verification file that holds data sufficient to spot differences in even the last floating point bit of the
calculations and explains why the detection of differences is nearly complete. Section 3 covers the means
of making the test powerful (reducing β) by selecting code features and test cases to provide practical
coverage of code calculations. Section 4 explains restart testing. Section 5 introduces and explains backup
testing. Section 6 is coding and scripting for the test. Section 7 is a Bibliography.

 3

1.1 Statistical Statement of the Testing System
To address all the testing deficiencies listed in Section 1.0, verification testing is developed using the

statistical theory of hypothesis testing. It is based on a collection of individual tests where two runs are
made and the calculations of the runs are compared.

The null hypothesis of the test, H0, is: “The two runs produce exactly the same calculations.” The
alternate hypothesis is that calculations are different. The statistic used to test the hypothesis for the ith test
case, Xi, has a value of 0 if no differences are found between the two runs. It is 1 otherwise, no matter
how many differences occur. When there are N test cases, then Xi is defined for each test case, i, and X is
the maximum. Applying standard statistical methods1-5, this can be expressed mathematically as:

Xi =
0 			 	0	 	 	 	
1 			 	 	 	 	 	 (1.1.1)

X = max {Xi | i = 1, 2, …, N} (1.1.2)

H0: The two runs produce exactly the same calculations (1.1.3)

A0: Code calculations are different (1.1.4)

Test: Accept the null hypothesis if X = 0, but reject it when X = 1. (1.1.5)

Acceptance Region: {0} (1.1.6)

Rejection Region for X: {1} (1.1.7)

The Equation numbers at the right are assigned to Definitions such as (1.1.1), Statements such as
(1.1.3), Tests such as (1.1.5), and Equations. Such numbered concepts will be referred to throughout as
Definitions, Statements, Tests, and Equations.

Hypothesis testing potentially commits two kinds of errors. The first, Type I Error or false positive, is
the rejection of the null hypothesis when it is true. That means finding differences when there are none.
The probability of committing Type I Error is denoted α and is called the level of significance of the test.

α = P(Reject H0 | H0 is true) (1.1.8)

The second kind of error, called Type II Error or a false negative, is to accept the null hypothesis
when it is false. That means there are differences that go undiscovered. It has probability β.

β = P(Accept H0 | H0 is false) (1.1.9)

The power of the test is the probability of correctly rejecting the null hypothesis when it is false. The
more powerful the test, the better it is.

Power = 1 – P(Accept H0 | H0 is false) = 1 – β (1.1.10)

These are all standard definitions1-5. A summary of the hypothesis testing is diagramed in Table 1.1.1.

Table 1.1.1. Hypothesis Testing Table for Test (1.1.5)
 H0 is true

No differences exist
A0 is true
Differences exist

Accept H0 Correct
Report: “No differences”

Type II Error
Don’t find extant differences

Reject H0 Type I Error
Detect non-existent differences

Correct
Report: “Differences found”

Section 1.2 presents theoretical results for Type I error. Section 1.3 discusses Type II error.

 4

1.2 The α-Significance of the Test
For null or Category 1 testing, the test is used to detect difference between two code versions, an

older one and a newer one. Typically, the newer one is a modification of the older one. The calculations
performed by both codes on the same input are compared. This is done for all N input files that form the
verification test suite. For the ith input file, Xi is evaluated according to Equation (1.1.1). After all N
values of Xi are obtained, X is calculated according to Equation (1.1.2) and a conclusion is drawn based
on Test (1.1.5). Note that this test will vary in power, Equation (1.1.10), based on two things: how the
differences are checked, and what input files go into the verification set. These issues are discussed in
Sections 1.3, 2 and 3. In the current Section, test power is not considered.

The surprising result is that Test (1.1.5), theoretically at least, cannot reject a null hypothesis when it
is true. The practical meaning of this is that the test, properly implemented, will never send code
developers on a fruitless search for bugs that are not there.

THEOREM 1.2.1: For Test (1.1.5), P(X=0 | H0 is true) = 1.

(This test will always accept the null hypothesis when it is true.)

PROOF: Suppose H0 is true. Then the two code versions produce identical calculations.

Therefore, there can be no differences to detect between the calculations of the two code versions, no
matter what input model is run. In particular, 0 differences are found for any of the N input models in the
verification test set. Thus, by definition of Xi and X in Equations (1.1.1) and (1.1.2),

Xi = 0, i = 1, 2, … , N (1.2.1)
X = max {Xi | i = 1, 2, … , N } = 0. (1.2.2)

So whenever the null hypothesis is true, X=0 and H0 will be accepted with 100% probability.
P(X=0 | H0 is true) = 1 (1.2.3)

Q.E.D.

 This result shows that the theoretical test will accept the null hypothesis when true; however it does
not preclude implementation issues. Programming errors could mistakenly indicate differences that are
not there. It also does not imply anything about the power of the test. Theorem 1.2.1 applies equally to a
test that compares only one value and a test the checks everything, as well as to a test that covers 1% of
the coding or 99% of the coding.

COROLLARY 1.2.1: For Test (1.1.5), P(X=1 | H0 is true) = 0.

The test never commits Type I Error, (never detects non-existent differences). It has
significance level, α = 0.

PROOF: P(X=0 | H0 is true) = 1 by (1.2.3). Therefore,
P(X=1 | H0 is true) = 1 - P(X=0 | H0 is true) = 1 – 1 = 0. Now by definition,
α = P(Reject H0 | H0 is true) = P(X=1 | H0 is true) = 0.

Q.E.D.

Test (1.1.5) applies not just to Category 1 or null testing but also to Categories 2 and 3, restart and
backup testing. Category 1 has two code versions and one input file, while Category 2 and 3 tests have
two input files and one code version. Restart testing also involves two auxiliary files, namely the restart
and plot files. The second input file restarts the run from an intermediate record of the restart and plot
files and ought to perform exactly the same calculations.

 5

THEOREM 1.2.2: Restart Test (1.1.5) commits no Type I Error. It has significance level, α = 0.

PROOF: Suppose H0 is true. Then the two code runs produce identical calculations. This is true despite
the involvement of auxiliary files.
As before, Xi = 0, for i = 1, 2, … , N and so X = max {Xi | i = 1, 2, … , N } = 0, and it follows that
P(X=0 | H0 is true) = 1. Following the same argument as above

α = P(Reject H0 | H0 is true)
 = P(X=1 | H0 is true)
 = 1 - P(X=0 | H0 is true) = 1 - 1 = 0.

Q.E.D.

Backup testing is performed by forcing the code to repeat an advancement with the same timestep by
falsely setting a backup flag. No auxiliary files are involved. The statement of the hypothesis must be
altered because the calculations performed are different; in the backup run for some advancement the
code performs the same calculations twice while in the base run the calculations are performed only once.
However, the calculations that result at the end of each advancement must be the same.

The statement of the null hypothesis, Statement (1.1.3), must be modified.

H0: The two runs produce exactly the same calculations at the end of each successful
advancement (1.1.3’)

Note though that this adjustment encompasses the original statement of Statement (1.1.3). It was not
made originally for simplicity of exposition. With Statement (1.1.3’), the proof of Theorems 1.2.1 and
1.2.2 remains the same.

THEOREM 1.2.3: For backups, Test (1.1.5) commits no Type I Error. It has significance level, α = 0.

PROOF: Suppose H0 is true. Then the two code runs produce identical calculated results at the end of
each successful advancement. This is true despite the fact that one run performs as many as twice as the
number of calculations as the other on the timestep(s) where the false backup is forced.
As before, Xi = 0, for i = 1, 2, …, N and so X = max {Xi | i = 1, 2, … , N } = 0, and it follows that
P(X=0 | H0 is true) = 1. Following the same argument as above

α = P(Reject H0 | H0 is true)
 = P(X=1 | H0 is true)
 = 1 - P(X=0 | H0 is true) = 1 - 1 = 0.

Q.E.D.

 6

1.3 Power of the Testing System
In order for this test to be effective, to have power approaching 1, there must be a good chance of

detecting differences between two versions caused by a coding change. Similarly it must be able to detect
differences in restart and backup testing. There are two important aspects to this:

 detection – finding errors in the coding tested
 coverage - percentage of coding exercised by the test set

The first requires the test to have a high probability of detecting differences in the calculations of two
different code versions for a given test case. Thus, it is desirable that each di equals 1 where

di = P(Xi =1 | There is a difference in test case i) (1.3.1)

As explained in Section 1.1, this is reduced by improving detection of differences and increasing
coverage. It is possible to guarantee detection of any difference between two code runs for any input
deck, i.

STRATEGY 1: For Test (1.1.5), compare all values of all variables to the last bit at every advancement
and report any difference found.

THEOREM 1.3.1: For Strategy 1, P(X=1 | There is a difference in test case i) = 1.
Strategy 1 has a 100% probability of detecting differences between two runs in the
verification test set.

PROOF: Suppose there is a difference between two runs for test case i. Then at least one variable must
have a different value between the two runs on some timestep. Since Strategy 1 compares all values at all
timesteps, it compares those two values and reports finding the difference. By Definitions (1.1.1) and
(1.1.2), Xi = 1 and therefore X = 1. Thus,

P(X=1 | There is a difference in test case i) = 1.

Q.E.D.

Of course, Strategy 1 is unnecessary and impractical. Section 2 develops a practical method and
explains that it is nearly as effective as Strategy 1.

The second aspect of test power, coverage, is important to Theorem 1.3.1. Despite the thoroughness
of Strategy 1, many differences will escape detection unless the coverage of the verification test set is
sufficient. Theorem 1.3.1 requires a difference in test case i of the verification set.

Consider an example. Suppose H0 is false because two versions of RELAP5-3D have coding that
produces different calculations. If none of the tests exercise that coding, Test (1.1.5) with Strategy 1 will
calculate that X=0 and accept H0 even though H0 is false. That is Type II Error,

β = P(Accept H0 | H0 is false) > 0 (1.3.2)

but in this example, P(X=1 | There is a difference in test case i) = 0. Thus,

1-β = 1 - P(Accept H0 | H0 is false) ≤ 1 - P(X=1 |	There is a difference in test case i). (1.3.3)

The power, 1 - β, of Test (1.1.5) increases as the coverage of the coding increases. Ideally, when
comparing two code runs that could produce differing calculations, the difference is detected by at least
one of the test cases (coverage) with 100% probability. That is:

d = min{di | i = 1, 2, …, N} = 1. (1.3.4)

 7

 As with Strategy 1, this ideal is impractical for any program as complex as RELAP5-3D, especially
if a goal for the verification test set is to run in a timely manner. It is more important to cover code
features in common use and those important to even one or two users. It is not important to cover features
that are seldom used or have not been exercised in many years. If users report errors in intentionally
omitted features, tests of those features can be added to the verification test set at that time.

Therefore, since coverage is not complete, the null hypothesis will be accepted sometimes when it is
false. The power of the test can be increased by improving the coverage of the code. As a starting point,
the most important code capabilities should be tested by incorporating relevant test cases in the test set.
Section 3 explains the verification test set.

 8

1.4 References
1-1 The RELAP5-3D Code Development Team, “RELAP5-3D Code Manual Volume I: Code Structure,

System Models and Solution Methods,” INL-EXT-98-00834-V1, Revision 4.0, Section 8.2, p 8-4,
June, 2012.

1-2 The RELAP5-3D Code Development Team, “RELAP5-3D Code Manual Volume III: Developmental
Assessment,” INL-EXT-98-00834-V1, Revision 4.0, Section 8.2, p 8-4, June, 2012.

1-3 G. L. Mesina, “Reformulation RELAP5-3D in FORTRAN 95 and Results,” Proceedings of the
ASME 2010 Joint US-European Fluids Engineering Summer Meeting and 8th International
Conference on Nanochannels Microchannels, and Minichannels, FEDSM2010-ICNMM2010,
Montreal, Quebec, Canada, Aug 1-5, 2010.

1-4 D. L. Aumiller, G. W. Swartele, J. W. Lane, F. X. Buschman and M. J. Meholic, “Development of
Verification Testing Capabilities for Safety Codes,” The 15th International Topical Meeting on
Nuclear Reactor Thermal - Hydraulics, NURETH-15, NURETH15-145, Pisa, Italy, May 12-17, 2013.

1-5 V. K Rohatgi, An Introduction to Probability Theory and Mathematical Statistics, Second Edition,
ISBN-10: 0-471-34846-5, John Wiley & Sons, Inc., NY, Oct 2000.

 9

2. VERIFICATION FILE

For effective null testing via Test (1.1.5), the probability of detecting a change that affects RELAP5-
3D calculations should be close to 1.0. In other words, a test with minimal Type II error, β, is sought.

β = P(Accept H0 | H0 is false) = P(X=0 | There is a difference in at least one case). (2.0.1)

According to Theorem 1.3.1, it is possible to attain 100% detection so that di = 1. Data needed for
Strategy 1 must be written on a disk file for each run and their contents compares. This approach has
many drawbacks:

1. The size of the disk files can grow without bound, based on user input.
2. There are serious maintenance issues, every time a new variable is introduced in the code, it

must be added to the write statements.
3. So many writes would seriously compromise code runtime.
4. Despite perfect detection of differences, coverage also controls Type II error.

The requisite disk file is unacceptable because of its unlimited size can. An upper limit on file size is
mandatory to avoid overfilling disk space. Although file compression can reduce size multifold and still
represent all that data with 100% accuracy, even the most powerful file compression methods cannot
prevent a user from overfilling disk space with a single file.

Accepting this limitation means d < 1 in Equation (1.3.4). The goal is to find a reduced representation
of the data that bring di near 1 for each input case in the test set. More importantly, the file must detect
differences in the basic, or most fundamental, variables. The file onto which the data is stored is called the
verification file.

The contents of the verification file are detailed in Section 2.2. Reduced representations of the most
important RELAP5-3D variables are dumped to the verification file on time-step advancements specified
by the user in the input file. This file is similar in many ways to the verification file developed at another
national laboratory for another TH code2-1.

With verification files, it is possible to detect differences in calculations, not only between two code
versions run on the same test case, but also between a base case run and a restart run, or between a base
case and a run with a forced back-up. Therefore, the verification file forms the basis for Category 1, 2,
and 3 testing. These are described in Sections 3, 4, and 5 respectively.

The null hypothesis must be rejected when differences occur for coding changes that are intended to
produce no changes to calculations, such as code cleanup or the addition of a new feature for which there
is no input file that tests it. However, for error corrections and improvements to code features, changes in
calculations are expected and even desired. Testing such changes should result in rejection of the null
hypothesis. In such cases, the developer must examine the test cases that differ to insure that differences
occur only in the proper ones.

Apart from the calculated data, key features of the verification file include: unique identification of
the code that ran it; the test case it ran; and the running time of the test case. This information is useful for
tracking down the source of the calculation change and creating historical records of code runs.

Section 2 develops the detection of differences for any input case.

 10

2.1 Functional Requirements for the Verification File
The following attributes constitute functional requirements for the verification file. These can be

found in the Purchase Order2-2 for this research and development project. According to that numbering
system, the attributes are summarized in Table 1.

Attribute Description of verification file and data
1 Sums of calculated values
2 Manageable size. Less than 1 MB.
3 On/off switch for verification file
4 Specify name for verification file: default & via input
5 Specify start and end time via input
6 When on, automatically write verification data for final timestep
7 Unique identifiers for code version and computer name
8 Execution time

Table 2.1.1 Attributes of a Verification File.

Attributes fall into two categories: user control and verification file contents. User control involves
activation of the verification file dumping, renaming the file from its default name, and the times at which
verification dumps are made. This is detailed in Section 2.2. Additional rules for verification file
operations are covered in Section 2.3. In Section 2.4, the contents of the verification file are explained in
detail.

 11

2.2 Verification File Control
Verification control attributes are summarized in Table 2.2. These represent subtasks for the work

necessary to produce the requisite user controls and specifications for the verification file. In this section,
the tasks are organized into chronological order by task.

Task Attribute Control of verification file

1 3 Runtime on/off switch for verification file – no recompilation
2 4 Specify name for verification file: default & via input
3 5 Start and end time specification via input
4 6 When on, automatically writes verification data on final timestep

Table 2.2.1 Control Tasks of a Verification File.

2.2.1 199 Card Control

Attributes 3, 5 and 6 are handled by modifying the 199 card2-3. This card was originally developed to
provide user control of start and end time for dumping debug information, much as the 105 card does but
with much greater control. The 199 card allows two keywords besides the start and end time. The first
keyword indicates the major type of information to dump, such as for the DTSTEP test matrix, linear
equation solver, or verification file. The second keyword indicates the action undertaken. Thus, the format
for a 199 card is:

199 keyword Action T-start T-end (2.2.1)

The keyword “verify” activates the verification file, and action is “dump” or a back-up condition.

2.2.2 Attribute 3: On/Off

Previously for a 199-card, the only allowable keyword was “DTSTEP.” New keywords “verify” and
“noverify” have been added. The “199 verify” card turns on verification dumps while “199 noverify”
turns it off. Thus, it is only possible to use “199 noverify” in an input file with multiple input cases; a later
input case can turn verification off for itself and subsequent input cases of the same deck.

This modification of the 199-card implements attribute 3 of Tables 2.1 and 2.2, for if a 199-card is
included in an input deck and word 1 is “verify,” the verification file is active. If it does not occur, no
verification file is written.

Currently, only one 199 card can occur per case of a RELAP5-3D input deck. A second 199 card is
treated as a replacement if it occurs in the same input case. It is, however, possible to expand this
capability in the future so that a single 199 card may contain multiple sets of “199 data” as is done
elsewhere in RELAP5-3D. That would, for example, allow the writing of a verification file while running
the DTSTEP Test Matrix simultaneously.

2.2.3 Attribute 5: Start/End Time

Attribute 5 is the ability, via input, to specify start and end time: T-start and T-end, where:

 T-start is the TIMESTEP on which to activate the writing of data to the verification file.
 T-end is the TIMESTEP on which to deactivate the writing of data to the verification file.

 12

Thus if “199 verify” occurs in the input deck, a verification file dump is written at timestep T-start

and every timestep thereafter until T-end.
This has been expanded.
For sensitive input models whose number of advancements change frequently when the code is

modified, such as TYPPWR, it is useful to specify a starting time based on cumulative time, rather than
the number of attempted advancements. Therefore, T-start can also specify a floating point time on which
to begin verification dumps. This means T-start can be an integer or real.

T-end is always an integer.
 When T-start is floating point, T-end is interpreted as the number of timesteps, counting the

timestep at T-start, on which to make verification dumps.
o For example “199 verify dump 1.0 1” will dump at times 1.0 sec and on the final step.
o Similarly, “199 verify dump 1.0 2” will dump at times: 1.0, 1.0+dt, and the final step.

 When T-start is integer, T-end is interpreted as advancement (NCOUNT) on which to make the
last dump before the automatic final dump.
o For example “199 verify dump 100 102” will dump on advancements 100, 101, 102 and

on the final step.
This has been further expanded.
To mimic the restart notation for specifying the final timestep with a negative one, the user may

specify T-end = -1. In that case, verification dumps will be made from T-start to the end of the transient
unless the verification file gets too large. With this mechanism, the verification file allows approximately
800 verification dumps for a single input case as currently configured; see Section 2.4, Equation (2.4.2).

2.2.4 Attribute 4: Input Naming of Verification File

Attribute 4 is the ability to name the verification file. The default name is “verify.” If an output file
has been specified through command line or input deck, the default verify-file name has the same base
file name, but has the file extension “vrf.”

The user can override these two default names via the command line option “–R.” If the 199 card is
present and calls for the verification file, and the “-R” command line flag is used, then its argument is the
verification filename. This is summarized in Table 3.

In the implementation, variable VERIFL holds the Fortran unit number for I/O statements (open,
close, read and write). In UFILSMOD, its value is set to 18, replacing the old direct access restart plot file
that was eliminated long ago. In the UFILFMOD it occupies position 15 in the FILSCH array. The coding
that implements Table 3 is a new internal subroutine in GNINIT1 called NameAnOutputFile.

199 card Word 1 Restart output file -R argument Verify File Verify File Name
Absent N/A any any No N/A
Present Verify none none Yes verify
Present Verify restname.out none Yes restname.vrf
Present Verify restname.out verifyfilenm Yes verifyfilenm
Present Anything

else
any any No N/As

Table 2.2.3. Naming the Verification File.

 13

2.2.5 Attribute 6: Dump on Final Step

Attribute 6 is the writing of a verification dump on the final timestep of a transient run whenever the
verification file is activated, and the code does not abort early.

The code was modified to implement this requirement by always calling the subroutine VERFSUM,
displayed in Section 7, in DTSTEP whenever VERFACTION > 0. VERFSUM checks for final timestep
and gathers all verification data if it is. In fact, VERFSUM checks if either the variable DONE is non-zero
or variable FAIL is true. If either condition holds, it writes the final verification dump at that timestep as
required. Since it is called after DTSTEP sets these conditions, VERFSUM catches graceful shut-down
situations (termination of runs not caused by the code aborting) in the transient and ensures that the final
verification dump is made.

 14

2.3 Verification File Operations beyond Original Workscope
Rules for handling files and input deck cases that apply to the verification file are listed here. These

additional issues and features were not addressed in the original project workscope.

1. The verification file can be named with the -R command line option.

2. An allowance to overwrite the verification file has been programmed. The normal ‘Zen of RELAP’
disallows the overwriting of an important file, and quits with an error message.

3. In decks with multiple cases, data for all cases is written. It goes on the same file while verification is
active. On the verification file, the cases are identified by their case number and title.

4. In decks with multiple cases, the verification file can be deactivated by a “199 noverify” card. The
verification file remains open until a “199 noverify” card is encountered in an input case. Once
closed, the verification file remains closed for subsequent cases. If “199 verify” card is not present in
the first case of an input deck with multiple cases, but occurs in a later case, no output to the
verification file occurs for cases that precedes the 199-card; however the verification file is activated
for the case in which the card occurs and remains active for all remaining cases unless deactivated in
a subsequent case.

5. In decks with multiple cases, the verification file may be reopened in a case subsequent to a case with
a “199 noverify” card through the use of a subsequent “199 verify” card. Thus a user may turn
verification on and off among the cases as often as desired. The output goes to the same verification
file for all cases of the same input deck.

6. The timesteps dumped on the verification file remain the same from case to case unless changed with
a replacement “199 verify” card or turned off.

7. The key value, -1, may replace the end time (or end advancement number) and means make
verification dumps until the final timestep.

 15

2.4 Verification File Contents
Verification content attributes are summarized in Table 2.4.1. These represent subtasks for the work

necessary to produce the requisite contents of the verification file. In this section, the tasks are organized
into chronological order by task.

Task Attribute Content Description
5 7 Unique identifiers for code version and computer name
6 1 Sums of calculated values
7 8 Execution time (CPU time)
8 2 Manageable size of less than 1 MB.

Table 2.4.1. Content Attributes of a Verification File.

2.4.1 Format of the Verification File

The verification file is written in human-readable ASCII format with textual annotations. It has a
maximum size of 1 MB and has three sections of information, namely the header, body, and footer.

The header contains the unique identifier for the RELAP5-3D program that produced the verification
file. It also contains the date and time the run was made.

The footer section contains the execution time (Attribute 8 in Table 2.4.1) for the entire problem.

The verification file’s body section contains the information dumps for each input case that is active
writing to the verification file. Within the section of a given input case, the data dumps for the user-
requested advancements are placed; ending with the dump for the final timestep of the case.

The data for a given input case begins with the input case number and title of the input case. After a
blank line, the advancement number and number of the verification data dump within the input case is
recorded. Next follows annotated L1-norm of floating point and integer arrays. The actual arrays summed
are given in Table 2.4.2 of Section 2.4.3. Integers are written in eight-byte format. Floating point values
are written in two formats. The first is 1pE24.16 for human readability, the second is HEXADECIMAL,
z32. The reason for HEX is that floating point representations, even at 16 places, may not reveal a
difference in the last bit, but hexadecimal will.

2.4.2 Code and Computer Identifiers

Attribute 7 is the unique identifier information for the RELAP5-3D program. There are two pieces of
data necessary to uniquely specify the RELAP5-3D run:

1. Code version number – The RELAP5-3D executable always had this hard coded.
2. Time program was built – Main program was modified to capture this via pre-compiler directives.

These are sufficient to uniquely identify the executable program that was used in the analysis, even when
multiple versions of the code can exist with the same internal version number. The computer identifier is
obtained via FORTRAN intrinsic2-4 get_environment_variable to access the value of HOSTNAME
on Linux platforms, and firstboot on Windows-7 platforms. Note that firstboot only tells the date and time
of the machine’s first boot-up, but that is virtually unique. Version, build-time, and computer identifier go
into the header.

 16

2.4.3 Execution Time

Attribute 8 is information about the execution time of the simulation. The value reported is the CPU
execution time the RELAP5-3D reports on the printed output file. For a given input case, RELAP5-3D
records the timing measured from the beginning of input processing to the end of the transient or steady
state calculation in s_stscpu. Where there are multiple input cases, the value reported is the sum of all
input case timings. Execution time goes into the footer.

2.4.4 Norms of Calculated Quantities

Attribute 1 of Tables 2.1.1 and 2.2.1 is a set of sums of independent values. These sums are the
quantities that reveal changes in code calculations. The quantities that are summed are listed in Table
2.4.2. The Table includes the symbol used by the RELAP5-3D manuals for the quantity and the area of
the calculations to which the quantity applies.

 Notation Quantity Symbol in

Manual
Identifier
on the file

Area

1 P Pressure p P TH
2 Uf Liquid internal energy uf Uf TH
3 Ug Gas internal energy ug Ug TH
4 VOIDg Void fraction of gas αg VOIDg TH
5 QUALa Noncondensable quality Xa QUALa TH
6 Boron Density of boron b Boron TH
7 Vf Liquid velocity Vf Vf TH
8 Vg Gas velocity Vg Vg TH
9 RHSth RHS of Δp linear system b RHSth TH
10 SOLth Pressure drop / velocities Δp / (Vf, Vg) SOLth TH
11 Error Errors ε Advancement
12 Temp Heat Structure Temperature T Temp Heat Transfer
13 Flux Neutron flux φ Flux Neutron Kinetics
14 dtsum Timesteps sum Δt, Δtkin dtsum Advancement
15 Trips Trips Tr Trips Trips
16 Cntrl Control system value Y Cntrl Controls
17 Rdc Reductions N/A Advancement
18 Rpt Repeats N/A Advancement

Table 2.4.2. Quantities on Verification File.

The L1-norm, or sum of absolute values of array entries, is calculated for each of the 18 quantities in

quadruple precision. For a vector z = (z1, z2, . . . zn) the L1 norm is:

‖ ‖ ∑ | | (2.4.1)

The L1 norm prevents the possibility of cancellation between positives and negatives accidentally

producing the same sum when the arrays are different. Most of the quantities in Table 2.4.2 are primary
variables in the governing equations. The remainder, such as errors and repeats, are measures of code
performance. The quantities in Table 2.4.2 go into the body of the verification file.

 17

2.4.5 Verification File of Manageable Size

Attribute 2 is satisfied by the small number of values written to the verification file. Since all of the
quantities are sums, the total number of values can be calculated as follows:

OUTPUT BYTES

Header
Code / Version / Computer ≤ 83
Compile Time 35
Run Date/Time 43
Blank line 1
Subtotal ≤ 98

Body – Case Title
Case Number and Title ≤ 90
Blank Line 1
Subtotal ≤ 91

Body – Advancement
Dump & advancements
numbers

52 each

18 floating pt. sums,
62 bytes each

1132 each

2 lines of integer sums,
60 bytes each

120 each

Blank Line 1
Subtotal 1305

Footer
CPU time & size 46
Subtotal 46
Body + Footer 1351

The formula for the upper limit on the size of the file is:

, , … , 98 46 91 1305 ∑ . (2.4.2)

where n is the number of input cases within the input file, and ti is the number of timesteps requested for
timestep dump i. This is an upper limit because the title may be fewer than 80 characters and the code can
abort before completing the run. When t is the number of timesteps per case for every case, the limit for
the size of the file reduces to:

 S n,	t = 144	 	91n	 	1305nt (2.4.3)

The size of a single advancement dump slightly exceeds 1 KB. Thus for a single input case, over 800
verification dumps can be made. Over 750 input cases, each with a single dump on the final timestep,
could fit the 1 MB limit. However, since the user controls the number of cases and dumps, safeguards
have been coded to limit the verification file size to remain under the 1 MB upper limit.

When the file grows to within one dump of the upper limit, an error message is written both on the
screen and the printed output file. This leaves sufficient space for the required dump on the final step of
that input case, therefore, no other verification dumps are made for the current input case until the final
timestep. Thereafter, the verification file is closed and cannot be reopened.

 18

2.4.6 Sample Verification File

The verification file for Edward’s Pipe problem edhtrk.i activated by card “199 verify dump 0.1 1” is
presented in Figure 2.4.6. It was produced by RELAP5-3D version 4.1.3 on computer steelers.inl.gov by
a code compiled on Aug 13, 2013. This information is in the header. The body displays case title, dumps
by advancement and time, the automatic dump at the end, and the sums. The footer has the run time.

Figure 2.4.6. Verification File with 2 Cases for Edward’s Pipe

RELAP5-3D/Ver:4.1.3 steelers.inl.gov
Time compiled: Aug 13 2013 13:29:15
Date and Time of run: 13/08/14 15:04:49

Case 1 edward's pipe problem base case with extras

Dump 1 Advancement= 109 time= 1.0000E-01
P= 4.9365983737086219E+07 401878A1EFDE58D75B00000000000000
Uf= 1.9649507480408072E+07 40172BD3E37AFC05FEC0000000000000
Ug= 5.4520489485535964E+07 40189FF554BE260AE000000000000000
VOIDg= 7.0158488970410998E+00 4001C103AB179E074A00000000000000
QUALa= 0.0000000000000000E+00 0
Boron= 0.0000000000000000E+00 0
Vf= 2.0448213290728118E+02 400698F6DA1FDA3236D4000000000000
Vg= 2.3165076689908255E+02 4006CF4D3151A9C1FEC1000000000000
RHSth= 0.0000000000000000E+00 0
SOLth= 5.2542461771631456E+04 400E9A7CEC6D54CEA4E0000000000000
Error= -8.5282658356481664E-05 BFF165B38EA0ADAA2000000000000000
Temp= 1.1047897158084513E+05 400FAF8EF8B985B33F57500000000000
Flux= 6.4046362410846550E+10 4022DD2EBDE55B16F000000000000000
dtsum= 3.0000000000000001E-03 3FF689374BC6A7EFA000000000000000
Trips= -3.9020138535691576E+00 C000F37530A0CF29DB80000000000000
Cntrl= 3.7065329809843512E+06 4014C47527D90E52D0F595356B020000
Rdc:Crnt,Extrp,Mass,Prop,Qual= 0 2 0 2 0
Rpt:Air,DelP,Flip,Jpack,Vpack= 0 0 0 0 0

Dump 2 Advancement= 509 time= 5.0000E-01
P= 1.1610017826711973E+07 4016624F43A746CAAC00000000000000
Uf= 1.3706563288757732E+07 4016A24A8693D80DB180000000000000
Ug= 5.3792556235069888E+07 40189A67961E16C52400000000000000
VOIDg= 2.0127747744316551E+01 4003420B4137FFA34180000000000000
QUALa= 0.0000000000000000E+00 0
Boron= 0.0000000000000000E+00 0
Vf= 2.8891214895206032E+02 400720E98297FE2E04B8000000000000
Vg= 9.1675057057565303E+02 4008CA6012B255E284C0000000000000
RHSth= 4.2453960924539154E+07 401843E5E476574C8C12980000000000
SOLth= 1.6144078316381101E+05 40103B50643EB635D838000000000000
Error= -9.9606881069212402E-05 BFF1A1C812FC4B5E8000000000000000
Temp= 1.0939814425864978E+05 400FAB5624EE2286FA5FD00000000000
Flux= 2.7820142401306227E+07 4017A8806E66BC014000000000000000
dtsum= 3.0000000000000001E-03 3FF689374BC6A7EFA000000000000000
Trips= -1.6980010000000000E+00 BFFFB2B0318B93469800000000000000
Cntrl= 8.6399604127190748E+05 4012A5DF815219769C2F2BB3AB200000
Rdc:Crnt,Extrp,Mass,Prop,Qual= 0 2 0 2 0
Rpt:Air,DelP,Flip,Jpack,Vpack= 0 0 0 0 0

CPU Time= 3.6094499999999996E-01 size 2764

 19

2.5 Analysis of Verification File Sufficiency
This section examines whether or not the quantities written to the verification file are sufficient for

detecting differences between runs of the same test case on two different code versions. The following
definitions apply to the discussion:

 Primary variable – one of the fundamental variables identified in the governing equations in
the manual.

 Secondary variable – not part of the governing equations, calculated from primary variables,
feedback into the primary variables.

 Tertiary variable – calculated for display only and does not feedback to primary or secondary
variables.

It will be shown that all errors in calculation of primary and secondary variables are caught by the
verification file and testing procedure (1.1.5), except for those lost to quadruple precision summing.
Errors in tertiary variables cannot be caught by the verification file. Tertiary variables can be important
for simulator application, for example an alarm trigger. This may prove important for future development.

2.5.1 Primary Variables of the TH equations, Rows 1-8

Pressure, density, void, both internal energies, noncondensable quality, and both velocities are
primary variables. The user has an idea of the right order of magnitude of these norms, so it gives a more
intuitive understanding of the situation than the norm of the TH system RHS or Δp solution array would
(in cases where the semi-implicit time advancement scheme is in use). L1-norms of these 8 arrays are
essential.

Consider what would happen if any of these quantities were calculated incorrectly in one of the two
runs being compared by Test (1.1.5). Either on the same timestep or the next, the secondary quantities
calculated from them would also have incorrect values. This eliminates the need to place secondary
variables on the verification file, except to verify the coding that calculates them. With few exceptions,
the differences will persist and often grow as the incorrect values propagate differences throughout the
solution. These differences will be displayed on the next verification dump.

The most obvious exception would be steady state TH conditions that strongly smooth out the error
before the next dump can be made. It is advisable to have an intermediate dump for input models such as
this.

Now consider the need of placing secondary variables on the verification file. If coding that computes
any of them is incorrect, the errors will propagate into other secondary variables, affect the construction
of the discrete system of governing equations on the next timestep, and alter the calculation of the primary
variables. With the exception noted, this change in primary variables will result in altered values on rows
1-8 at the next dump. Little is gained by adding secondary variables to the dumps, other than helping to
recognize where an error occurs. However adding secondary increases the size of the verification file, so
it is not done. Debugging with the verification file is covered in Section 2.6

2.5.2 Heat Structure Temperatures and Fluxes, Rows 12-13

The temperatures are summed across all mesh points. With a similar argument as presented for TH, if
temperature or flux were calculated incorrectly, derived quantities would also be calculated incorrectly.
Moreover, the user knows what kinds of values to expect.

Until it is shown insufficient, only the L1-norms of these two quantities will be dumped on the
verification file.

 20

2.5.3 TH Equation RHS and Solution Vector Norms, Rows 9-10

The right hand side of the TH equations could be considered a primary variable, but because all the
actual primary variables are normed and displayed, these are redundant. Moreover, the user has no feel
for the values of the right hand side array as they do for the primary variables. For the semi-implicit
timestep methods the control volume pressure drops, Δp, are the most fundamental of all variables
because all other primary TH variables are back-solved from them. For nearly implicit however, the
solution is velocity-based and the pressure drop sum winds up as zero. For these reasons, these are not
considered essential, but are calculated and presented. They can be ignored for comparison of state points.
They are primarily useful for debugging as is shown in Section 2.6.

2.5.4 Sum of trip and control variables, Rows 15-16

Trip and control quantities can change based on time, tables, component action. The result of trips
and controls may be to activate an alarm for plant operators, a tertiary variable. Trip and control quantities
are primary variables that do not completely depend on the TH, Temperature and Flux variables and may
not affect them in return. Therefore their L1-norms are calculated and dumped on the verification file.

2.5.5 Timestep and Error sums, Rows 11, 14

The timestep information indicates to the user what the rate of progress through the transient is.

The mass residual ratio and error estimate are critical to timestep/advancement strategy and for
evaluating the closeness of the approximations

2.5.6 Sum of key output-only quantities, Rows 17-18

None of these should differ between comparable runs. They are completely dependent on the primary
variables and are only included to aid in debugging. They are:

 Sum of the reasons for time-step reductions including: noncondensable quality, extrapolation,
mass error, fluid property and courant limit violations.

 Sums of reasons for backups.

No other quantities, secondary, tertiary, or temporary are dumped to the verification file. As noted,
errors in secondary quantities eventually affect primary quantities. The quantities in (1) – (4) cover the
calculations of the primary physics at the 100% level, if computer arithmetic were perfect. However
computer arithmetic is not perfect. Issues with the integer sums (5) and floating point are addressed next.

The integer output quantities count the number of times something, such as a particular type of back-
up condition, happens at a given location, such as a control volume. The sum of those happenings across
the entire vector of locations may be the same even though the locations where they occurred in two runs
that are being compared differ.

Also, the standard 8-byte floating point word has about 14 decimal digits of accuracy. If one member
of the array is 15 orders of magnitude smaller than another, it contributes nothing to the sum. A difference
in this member of the array in two corresponding runs results in identical numbers being written to the
verification file. To somewhat overcome these round-off error issues, floating point sums are accumulated
in quadruple or 16-byte precision. This gains at least 10 decimal places. Moreover, these sums are written
in Z32 Hexadecimal format to represent every one of the 128 bits in the sum.

 21

The L1-norm, which is the sum of the absolute values of the array values, was chosen to eliminate the
possibility that two different arrays could have the same sum due to arithmetic cancellation. This helps to
reduce the Type II Error, Equation (1.1.9) and increase the power, Equation (1.1.10) of Test (1.1.5).

Comparison of the verification dump file analysis with Strategy 1 shows the following deficiencies in
their detection capabilities.

1. While it is true that L1-norm values can be equal for two different arrays, all primary variables are
interdependent. It is most unlikely that the L1-norms of all these arrays will be equal while all the
arrays differ, except in trivial (contrived) cases. In real plant models, the chance is nearly 0%.

2. While the 24 decimal place accuracy of quadruple precision sum can be equal for two different
arrays, the values lost to the sum are vanishingly small. Except for computer noise in uninitialized
quantities, this should never happen in real plant models. The chance is nearly 0%.

3. The absence of secondary variables causes no loss of detection unless the transient ends before
the error in a secondary variable manifests itself in a primary variable, and that normally occurs
on the next timestep.

4. Errors in tertiary and temporary variables, except those listed in Section 2.5.6 above, will not be
detected.

Other than those listed in Section 2.5.6 above, the verification file cannot detect errors in output only
quantities and therefore cannot guarantee that code output is correct. For example, if a change resulted in
the incorrect reporting of a flow regime as bubbly rather than pure liquid, the error would affect neither
primary variables nor any other quantity in the dumped information, and so the verification file cannot
help with detecting or debugging that. This demonstrates that the verification file does not detect
differences with 100% effectiveness. It does commit Type II error. However, this is a small defect in
detection.

This analysis demonstrates that differences between two runs in important calculated quantities for
non-trivial models will be detected nearly 100% of the time.

 22

2.6 Debugging with the Verification File
The verification file provides useful information for locating the source of change. If a difference

between two code versions running the same input file is discovered, and no change to the source code
was expected to cause it, the difference is an error. To find the error the follow steps can be taken.

1. Turn on verification dumps at every timestep in the vicinity of the time the error is suspected to
occur. Repeat this until the first timestep with a difference is found.

2. For the timestep of the first difference and its preceding step, compare the solution vector and
right hand side norms.

a. If the RHS sums are the same, but the solution vector sums differ, then the solver has an
error.

b. If both RHS and solution vector sums differ between versions, then non-solver routines
committed an error.

3. For non-solver errors, if the information in Section 2.5 items (4) and (5) differ between the runs,
then the error occurs in the subroutines called after the solver routines on that timestep.

a. If those data are the same, then the error occurs on the next timestep in subroutines called
before the solver routines.

This is summarized in Table 2.6.1.

RHS sum Solution sum Output-only Location of error
Same same N/A no error
Same differ N/A solver
Differ same N/A solver
Differ differ differ this advancement after solver
Differ differ same next advancement before solver

Table 2.6.1. Debugging Use of the Verification File.

 23

2.7 References
2-1 D. L. Aumiller, G. W. Swartele, J. W. Lane, F. X. Buschman and M. J. Meholic, “Development

of Verification Testing Capabilities for Safety Codes,” The 15th International Topical Meeting on
Nuclear Reactor Thermal - Hydraulics, NURETH-15, NURETH15-145, Pisa, Italy, May 12-17,
2013.

2-2 C. Gross, “Restart and Backup Testing,” Purchase Order Number 7001655, Amendment 3,
BMPC, Sep 26, 2012.

2-3 G. L. Mesina and D. L. Aumiller, " DTSTEP: Development of an Integer Time Step Algorithm,"
RELAP5 International Users Seminar, Park City, UT, Aug 10-13, 2010.

2-4 J. C. Adams, et al, The Fortran 2003 Handbook, The Complete Syntax, Features, and Procedures,
ISBN 978-1-84628-378-9, Library of Congress 2008934286, Springer, springer.com, October 31,
2008.

 24

3. NULL TESTING

Null testing, or Category 1 testing, makes use of the verification file specified in Section 2 to detect
differences between two RELAP5-3D versions applied to the same input. As presented previously, there
are two fundamental aspects controlling the Type II error of Test (1.1.5), namely, the detection of
differences for a given input case and the coverage of the program provided by the test cases of the Test
suite.

In Section 2.5, it was shown that the verification file provides excellent detection of differences
between two code versions running the same input file. In Section 3, the coverage of the RELAP5-3D
program is examined.

Typically, coverage analysis examines the lines, functions and subprograms of a code. Instead, the
features of the code are considered. The features include the most commonly used features in RELAP5-
3D as well as certain other important features. Those features deemed to be of lesser importance, because
either they are seldom exercised or are not important for modeling nuclear power plants, are not included
in the features tested by the suite. However, the suite can be expanded to include testing of more features
in the future.

Once the features of RELAP5-3D were identified, a collection of input problems was developed to
test them. Much of this was done by collecting relevant extant test cases. These input decks were
modified to test additional important code features.

Section 3.1 contains the functional requirements for the Category 1 or null testing. Section 3.2 lists
the tested code features in tabular form. There are over 100 and they are documented in the RELAP5-3D
manuals, so they are not expounded upon in the Section. The input models of the test suite are described
in Section 3.3. The automated means is discussed in Section 3.4. Section 3.5 presents the verifications run
on two identical machines for comparison. Section 3.6 supplies references.

 25

3.1 Functional Requirements
The functional requirements or attributes for null, or Category 1, testing can be summarized as

follows2-2, 3-16:

1. A collection of input problems that test important features of RELAP5-3D.

 The collection of input problems that test the most commonly used features in RELAP5-3D
must be developed.

 A description of the test features that are included in the test suite must be provided.
 The list of problems and the descriptions of features must be approved by the purchaser.
 The list shall also include all features that are known to be absent from the test suite.

2. A simple method for performing null testing:

 An easy and automated means to perform null testing must be provided.
 This must provide the ability to test different versions of the code or to test the results on

different platforms.
 This method must provide an unambiguous statement concerning the success of lack of

success of the null testing.

When two runs produced by different code versions are compared, there may be differences due to

code development, code maintenance, code error corrections, differences in compiler levels and options,
and other operating system and hardware differences. Therefore differences do not necessarily indicate an
error has been discovered. However, care must be taken to ensure that the compiler, operating system and
hardware are the same before any comparison is made.

 26

3.2 Features and Cases Matrix
A review of the code’s capabilities and features that are commonly used in performing reactor and

associated system simulations was performed. The important categories of code features and models
included hydrodynamic components, volume and junction options, heat structure types, correlations,
boundary conditions, trips, tables, control variables, reactor kinetics, Appendix K, and user choices that
affect the way the code operates. Among user choices are time advancement scheme, solver, card 1
options and many others.

3.2.1 RELAP5-3D Features

Groups of features were expanded to list individual ones. For example, a valve is a hydrodynamic
component and six kinds of valves are listed. Altogether 112 features were selected for testing. This
represents all code features commonly used to model nuclear power plants, and numerous uncommon
ones.

Rarely used components, models, and features were excluded from the verification test suite.
 The mechanistic General Electric separator component is not tested but does appear in the matrix.
 Several rarely used heat transfer packages and options were excluded from the matrix.
 Card 1 options, debug and print control options, minor edits, expanded minor edits, and interactive

variables are not systematically tested, though specific Card 1 options are tested.
 Not all fluids are tested.
However Test cases were developed for all the code’s different interpolators as exercised by H2O, D2O,
H2O-New, and “new” ATHENA fluids, such as new helium. Moreover, the principal timestep level-of-
implicitness options (tt = 3, 7, 11, and 15) are specifically exercised for a few of the cases in the null test
set. If desired, these options can readily be tested with the entire test suite using recently developed
methods3-13.

3.2.2 Input Decks

Based on testing these features, the verification test suite of input decks has been developed for
verification restart and backup testing. In Section 3, the emphasis is on Category 1 or null testing,
however the same cases are used for the other two testing categories.

Input decks were selected for the test suite based on run speed and ability to test given features. It is
not necessary to run long transients to test most features, many can be tested in short transients. Therefore
with the exception of TYP12002.i, each test case in the suite runs requires only a few CPU seconds. The
entire suite of calculations can be performed in a few minutes on a single processor. Even though it
requires much more CPU time than the other test cases, TYP12002.i is included in the test suite because it
exercises numerous two-phase models and is known to be very sensitive to minor coding changes during
the latter stage of the transient.

Many of the decks contain multiple cases, as listed in Section 3.2, Table 3.2.1. Thus at present, the
verification test suite contains 43 input decks comprised of 125 input cases. More RELAP5-3D
simulations are performed if restart or backup testing (Sections 4 and 5) are also run.

3.2.3 Tabulation of the Verification Suite

The verification test suite is comprised of the input decks that test the selected features. The deck that
tests a specific feature is recorded in the Features-Cases Matrix of Tables 3.1.1 – 3.1.6 by a mark under
the input deck indicates in the rows of the features tested. About half of the entries in these six tables are
generated by a script, the rest are marked by hand. Rows hand-marked typically have only one “X,” even
though more decks may test the feature. Having a single case that tests a given feature or model is
assumed to be sufficient. Therefore for a given feature, not every problem that tests it is marked in the
Tables.

 27

In the “Features-Cases” Matrix, two indicator columns follow the list of features. An “X” in Column
two indicates the feature is tested by at least one member of the suite of cases, while a blank indicates no
testing. An “X” in Column three indicates feature is restarted, while a blank indicates no restart.

Two important assumptions were made in the construction of the verification test suite:
1. The verification suite does not exercise all available user options for each code feature. Basic

capabilities are demonstrated, but complete code coverage of individual features is not attempted.
2. If a feature is tested in one kind of component, it need not be tested in another.

a. For example, if Water Packing is tested in a PIPE component, it need not also be tested in a
SNGLVOL or BRANCH.

Since both hydrodynamic components and water packing are code features, without assumption two, the
Features-Decks matrix would need to be multi-dimensional. Moreover, without these assumptions, the
number of test cases necessary would be prohibitive.

Table 3.1.1. Features-Cases Matrix – Hydrodynamic Components

F
e
a
t
u
r
e
s

P
r
e
s
e
n
t

R
e
s
t
a
r
t

2
p
h
s
p
u
m
p
.
i

3
d
f
l
o
w
.
i

a
n
s
.
i

b
o
r
o
n
m
.
i

c
r
i
t
.
i

c
y
l
3
.
i

D
r
i
f
t

N
/
A

d
u
k
l
e
r
m
.
i

e
c
c
m
i
x
.
i

e
d
h
t
r
k
m
.
i

e
f
l
a
g
.
i

e
n
c
l
s
s
.
i

f
r
i
c
.
i

f
w
h
t
r
.
i

g
o
t
a
2
7
.
i

h
s
e
.
i

h
t
t
a
b
l
e
.
i

h
t
t
e
s
t
.
i

h
x
c
o
2
m
.
i

j
e
t
j
u
n
.
i

j
e
t
p
m
p
m
.
i

l
2
-
5
-
e
m
A
.
i

l
3
1
a
c
c
.
i

n
e
p
t
u
n
u
s
2
0
m
.
i

p
a
c
k
.
i

p
i
t
c
h
.
i

r
a
d
i
a
l
m
.
i

r
c
p
r
.
i

r
e
f
b
u
n
m
.
i

r
e
f
l
e
c
h
t
.
i

r
e
g
i
m
e
.
i

r
i
g
i
d
b
o
d
y
m
.
i

r
t
h
e
t
a
m
.
i

r
t
s
a
m
p
n
m
.
i

r
t
s
a
m
p
p
m
.
i

s
l
a
b
3
.
i

s
p
h
e
r
e
3
.
i

s
t
a
t
e
.
i

t
o
d
c
n
d
.
i

t
u
r
b
i
n
e
9
.
i

t
y
p
1
2
0
0
2
.
i

t
y
p
_
k
i
n
d
t
.
i

v
a
l
v
e
.
i

v
a
r
v
o
l
2
.
i

 # # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
Hydro-Component
 SNGLVOL X X X X X X X X X X X X X X X X

 TMDPVOL X X X X X X X X X X X X X X X X

 SNGLJUN X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

 TMDPJUN X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

 PIPE X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

 ANNULUS X X X X X X X

 PRIZER X X X

 BRANCH X X X X X X X X X X X

 SEPARATR X X X X X X X

 Black box X X X

 GE

 JETMIXER X X X

 TURBINE X X X

 FWHTR X X X

 ECCMIX X X X

 VALVE X X X X X X X X X X

 CHKVLV X X X

 TRPVLV X X X X X X X X

 INRVLV X X X X

 MTRVLV X X X X X X X X

 SRVVLV X X X X

 RLFVLV

 PUMP X X X X X X X X

 CPRSSR X X X

 MTPLJUN X X X X X X

 ACCUM X X X X X X X X

 MULTID X X X X X X

 SNGLFW

 MTPLFW

 28

Table 3.1.2. Features-Cases Matrix – Component Control & Specification
F
e
a
t
u
r
e
s

P
r
e
s
e
n
t

R
e
s
t
a
r
t

2
p
h
s
p
u
m
p
.
i

3
d
f
l
o
w
.
i

a
n
s
.
i

b
o
r
o
n
m
.
i

c
r
i
t
.
i

c
y
l
3
.
i

D
r
i
f
t

N
/
A

d
u
k
l
e
r
m
.
i

e
c
c
m
i
x
.
i

e
d
h
t
r
k
m
.
i

e
f
l
a
g
.
i

e
n
c
l
s
s
.
i

f
r
i
c
.
i

f
w
h
t
r
.
i

g
o
t
a
2
7
.
i

h
s
e
.
i

h
t
t
a
b
l
e
.
i

h
t
t
e
s
t
.
i

h
x
c
o
2
m
.
i

j
e
t
j
u
n
.
i

j
e
t
p
m
p
m
.
i

l
2
-
5
-
e
m
A
.
i

l
3
1
a
c
c
.
i

n
e
p
t
u
n
u
s
2
0
m
.
i

p
a
c
k
.
i

p
i
t
c
h
.
i

r
a
d
i
a
l
m
.
i

r
c
p
r
.
i

r
e
f
b
u
n
m
.
i

r
e
f
l
e
c
h
t
.
i

r
e
g
i
m
e
.
i

r
i
g
i
d
b
o
d
y
m
.
i

r
t
h
e
t
a
m
.
i

r
t
s
a
m
p
n
m
.
i

r
t
s
a
m
p
p
m
.
i

s
l
a
b
3
.
i

s
p
h
e
r
e
3
.
i

s
t
a
t
e
.
i

t
o
d
c
n
d
.
i

t
u
r
b
i
n
e
9
.
i

t
y
p
1
2
0
0
2
.
i

t
y
p
_
k
i
n
d
t
.
i

v
a
l
v
e
.
i

v
a
r
v
o
l
2
.
i

 # # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
Variable volume X

Volume Flags

 t - thermal stratification X X X
 l - mixture level X X X X
 p - water packing X X X
 v - vertical stratification X X X
 b - bundle X X X X X X X
 f - wall friction X X X
 e – equilibrium X X X

Wall friction options

 Turbulent friction X X X
 Laminar friction X X X
 Shape factor X X X
 Viscosity ratio X X X
 User defined X X X
 Frictionless X X X

Junction Flags

 j - jet junction X X X
 e - modified PV X X X
 f - CCFL X X X X
 Wallis X X X
 Kutataledze X X X
 Bankoff X X X
 v - HSE X X X X
 Top offtake X X X
 Bottom offtake X X X
 Side offtake X X X
 c - choking X X X
 Sub-cooled X X X
 Two phase X X X
 Super-heated X X X
 a - abrupt area X X X X X X X X X X X X X X X X X X X X X X X X X X X
 h - homogeneous X X X X X X
 s - momentum flux X X X X X X X

Junction form loss

 Constant X X X
 Reynolds dependent X X X
 Abrupt area change X X X

Flow regimes

 Horizontal X X X
 Vertical pre-CHF X X X
 Vertical post-CHF X X X
 High mixing X X X
 ECC mixer X X X
Drift flux models X X X

 29

Table 3.1.3. Features-Cases Matrix – Heat Transfer Specification
F
e
a
t
u
r
e
s

P
r
e
s
e
n
t

R
e
s
t
a
r
t

2
p
h
s
p
u
m
p
.
i

3
d
f
l
o
w
.
i

a
n
s
.
i

b
o
r
o
n
m
.
i

c
r
i
t
.
i

c
y
l
3
.
i

D
r
i
f
t

N
/
A

d
u
k
l
e
r
m
.
i

e
c
c
m
i
x
.
i

e
d
h
t
r
k
m
.
i

e
f
l
a
g
.
i

e
n
c
l
s
s
.
i

f
r
i
c
.
i

f
w
h
t
r
.
i

g
o
t
a
2
7
.
i

h
s
e
.
i

h
t
t
a
b
l
e
.
i

h
t
t
e
s
t
.
i

h
x
c
o
2
m
.
i

j
e
t
j
u
n
.
i

j
e
t
p
m
p
m
.
i

l
2
-
5
-
e
m
A
.
i

l
3
1
a
c
c
.
i

n
e
p
t
u
n
u
s
2
0
m
.
i

p
a
c
k
.
i

p
i
t
c
h
.
i

r
a
d
i
a
l
m
.
i

r
c
p
r
.
i

r
e
f
b
u
n
m
.
i

r
e
f
l
e
c
h
t
.
i

r
e
g
i
m
e
.
i

r
i
g
i
d
b
o
d
y
m
.
i

r
t
h
e
t
a
m
.
i

r
t
s
a
m
p
n
m
.
i

r
t
s
a
m
p
p
m
.
i

s
l
a
b
3
.
i

s
p
h
e
r
e
3
.
i

s
t
a
t
e
.
i

t
o
d
c
n
d
.
i

t
u
r
b
i
n
e
9
.
i

t
y
p
1
2
0
0
2
.
i

t
y
p
_
k
i
n
d
t
.
i

v
a
l
v
e
.
i

v
a
r
v
o
l
2
.
i

 # # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Type Heat Structure

 Rectangular X X X
 Cylindrical X X X
 Spherical X X X

Heat transfer modes

 Forced convection X X X
 Nucleate boiling X X X
 Condensation X X X
 Film boiling X X X
 Transition boiling X X X
 Reflood heat transfer X X X
 2D heat conduction X X X

Heat structure BC types

 Adiabatic X X X
 Convective X X X
 Wall temperature X X X
 Heat flux (table) X X X
 Heat flux (control var.) X X X
 HTC vs. time X X X
 HTC vs. Temp X X X
 Alternate coupling X X X
Heat structure heat source
options

 Radial X X X
 Table X X X
 Control variable X X X
 Point kinetics X X X
 Nodal kinetics X X X
Gap conductance model

Metal-Water

 Rectangular X X X
 Cylindrical X X X
 Spherical X X X

Material Prop

 Built in X X X
 Input X X X X
 Function X X X

Enclosure

 Conduction X X X X
 Radiation X X X

 30

Table 3.1.4. Features-Cases Matrix – Tables and Kinetics

F
e
a
t
u
r
e
s

P
r
e
s
e
n
t

R
e
s
t
a
r
t

2
p
h
s
p
u
m
p
.
i

3
d
f
l
o
w
.
i

a
n
s
.
i

b
o
r
o
n
m
.
i

c
r
i
t
.
i

c
y
l
3
.
i

D
r
i
f
t

N
/
A

d
u
k
l
e
r
m
.
i

e
c
c
m
i
x
.
i

e
d
h
t
r
k
m
.
i

e
f
l
a
g
.
i

e
n
c
l
s
s
.
i

f
r
i
c
.
i

f
w
h
t
r
.
i

g
o
t
a
2
7
.
i

h
s
e
.
i

h
t
t
a
b
l
e
.
i

h
t
t
e
s
t
.
i

h
x
c
o
2
m
.
i

j
e
t
j
u
n
.
i

j
e
t
p
m
p
m
.
i

l
2
-
5
-
e
m
A
.
i

l
3
1
a
c
c
.
i

n
e
p
t
u
n
u
s
2
0
m
.
i

p
a
c
k
.
i

p
i
t
c
h
.
i

r
a
d
i
a
l
m
.
i

r
c
p
r
.
i

r
e
f
b
u
n
m
.
i

r
e
f
l
e
c
h
t
.
i

r
e
g
i
m
e
.
i

r
i
g
i
d
b
o
d
y
m
.
i

r
t
h
e
t
a
m
.
i

r
t
s
a
m
p
n
m
.
i

r
t
s
a
m
p
p
m
.
i

s
l
a
b
3
.
i

s
p
h
e
r
e
3
.
i

s
t
a
t
e
.
i

t
o
d
c
n
d
.
i

t
u
r
b
i
n
e
9
.
i

t
y
p
1
2
0
0
2
.
i

t
y
p
_
k
i
n
d
t
.
i

v
a
l
v
e
.
i

v
a
r
v
o
l
2
.
i

 # # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Radionuclide transport X X X X
Reactor kinetics
 Point X X X X X
 SEPARABL X X X X
 TABLE3
 TABLE4
 TABLE3A
 TABLE4A
 Scram (table) X X X
 Scram (control var.)
 Power history X X X
 Nodal X X X
 RAMONA
 HWR
 GEN X X X
 Control Rod X X X

Decay Heat

 NO-GAMMA X X X
 GAMMA X X X
 GAMMA-AC X X X X X
 ANS73 X X X
 ANS79-1 X X X
 ANS79-3 X X X X X
 ANS94-1 X X X
 ANS94-4 X X X
 ANS05-1 X X X
 ANS05-4 X X X
 G factor X X X
Alternate fluids X X X X X X X X
Noncondensable X X X X X X X X X X X X X X X X X X X X X X X X
Valve open and close X X X
Boron tracking X X X X

 31

Table 3.1.5. Features-Cases Matrix – Trips and Controls

F
e
a
t
u
r
e
s

P
r
e
s
e
n
t

R
e
s
t
a
r
t

2
p
h
s
p
u
m
p
.
i

3
d
f
l
o
w
.
i

a
n
s
.
i

b
o
r
o
n
m
.
i

c
r
i
t
.
i

c
y
l
3
.
i

D
r
i
f
t

N
/
A

d
u
k
l
e
r
m
.
i

e
c
c
m
i
x
.
i

e
d
h
t
r
k
m
.
i

e
f
l
a
g
.
i

e
n
c
l
s
s
.
i

r
e
g
i
m
e
.
i

f
r
i
c
.
i

f
w
h
t
r
.
i

g
o
t
a
2
7
.
i

h
s
e
.
i

h
t
t
a
b
l
e
.
i

h
t
t
e
s
t
.
i

h
x
c
o
2
m
.
i

j
e
t
j
u
n
.
i

j
e
t
p
m
p
m
.
i

l
2
-
5
-
e
m
A
.
i

l
3
1
a
c
c
.
i

n
e
p
t
u
n
u
s
2
0
m
.
i

p
a
c
k
.
i

p
i
t
c
h
.
i

r
a
d
i
a
l
m
.
i

r
c
p
r
.
i

r
e
f
b
u
n
m
.
i

r
e
f
l
e
c
h
t
.
i

r
i
g
i
d
b
o
d
y
m
.
i

r
t
h
e
t
a
m
.
i

r
t
s
a
m
p
n
m
.
i

r
t
s
a
m
p
p
m
.
i

s
l
a
b
3
.
i

s
p
h
e
r
e
3
.
i

s
t
a
t
e
.
i

t
o
d
c
n
d
.
i

t
u
r
b
i
n
e
9
.
i

t
y
p
1
2
0
0
2
.
i

t
y
p
_
k
i
n
d
t
.
i

v
a
l
v
e
.
i

v
a
r
v
o
l
2
.
i

 # # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
Trips X X X X X X X X X X X X X X X X X X

Control variables

 SUM X X X X X X X X X X X X X X X X X X X X X X X X X
 MULT X X X X X X X X X X X X X X X X
 DIV X X X X X X X X X X X X X X X X
 DIFFRENI X X X
 DIFFREND X X X X
 INTEGRAL X X X X X X X X X X
 DELAY X X X X
 FUNCTION X X X X X X X X
 STDFNCTN X X X X X X X X X X X
 ABS X X X X X X X
 SQRT X X X X X X X X X X
 EXP X X X X X X
 LOG X X X
 SIN X X X X
 COS X X X X
 TAN X X X
 ATAN X X X
 MIN X X X X
 MAX X X X X X X X X
 TRIPUNIT X X X X X X X X
 TRIPDLAY X X X
 POWERI X X X
 POWERR X X X X X
 PROP-INT X X X X X
 LAG X X X
 LEAD-LAG X X X
 CONSTANT X X X X X X X X X X X X
 SHAFT X X X X
 PUMPCTL X X X
 STEAMCTL X X X
 FEEDCTL X X X
 INVKIN X X X

 32

Table 3.1.6. Features-Cases Matrix – Code Operation Control & Misc.
F
e
a
t
u
r
e
s

P
r
e
s
e
n
t

R
e
s
t
a
r
t

2
p
h
s
p
u
m
p
.
i

3
d
f
l
o
w
.
i

a
n
s
.
i

b
o
r
o
n
m
.
i

c
r
i
t
.
i

c
y
l
3
.
i

D
r
i
f
t

N
/
A

d
u
k
l
e
r
m
.
i

e
c
c
m
i
x
.
i

e
d
h
t
r
k
m
.
i

e
f
l
a
g
.
i

e
n
c
l
s
s
.
i

f
r
i
c
.
i

f
w
h
t
r
.
i

g
o
t
a
2
7
.
i

h
s
e
.
i

h
t
t
a
b
l
e
.
i

h
t
t
e
s
t
.
i

h
x
c
o
2
m
.
i

j
e
t
j
u
n
.
i

j
e
t
p
m
p
m
.
i

l
2
-
5
-
e
m
A
.
i

l
3
1
a
c
c
.
i

n
e
p
t
u
n
u
s
2
0
m
.
i

p
a
c
k
.
i

p
i
t
c
h
.
i

r
a
d
i
a
l
m
.
i

r
c
p
r
.
i

r
e
f
b
u
n
m
.
i

r
e
f
l
e
c
h
t
.
i

r
e
g
i
m
e
.
i

r
i
g
i
d
b
o
d
y
m
.
i

r
t
h
e
t
a
m
.
i

r
t
s
a
m
p
n
m
.
i

r
t
s
a
m
p
p
m
.
i

s
l
a
b
3
.
i

s
p
h
e
r
e
3
.
i

s
t
a
t
e
.
i

t
o
d
c
n
d
.
i

t
u
r
b
i
n
e
9
.
i

t
y
p
1
2
0
0
2
.
i

t
y
p
_
k
i
n
d
t
.
i

v
a
l
v
e
.
i

v
a
r
v
o
l
2
.
i

 # # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Tables

 POWER X X
 Temperature X
 HTRNRATE X X X X
 HTC-T X X X X X
 HTC-TEMP *
 REAC-T X X X X X X X X X X X X X X X
 NORMAREA X X X
 NORMVOL X X X

Equation Solvers

 BPLU X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
 MA18 (35) X X X X X X
 PGMRES (34) X X X X X X
 LSOR X X X
 Krylov X

Timestep options

stdy-st X X X X X
Semi-implicit X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
Nearly-implicit X X X X X X X
 Hydro-heat explicit X X X X X X X X X X X X X X X X X X X X X X X X X
 Hydro-heat implicit X X X X X X X X X X X X X X X

Card 1 options

 11 Supercritical X X X X
 15 ΔtCourant X X X X X
 23 Godunov X X X
 27 MULTID testing X X X X
 41K-loss energy

dissipation
X X X X X

 50 No flip flop X X X X X
 51 No water packing X X X
 54 Void truncation X X X X X
 55 Annular mist X X X X X

Appendix K

 Decay heat X
 Metal water reaction X
 Critical flow X
 CHF X
 Post-CHF heat
transfer

 X

It is recognized that the verification test suite and Features-Cases Matrix are living documents. Both
will be expanded as new features and good test cases become available. In particular, the drift.i input deck
and several features are not yet included but are left as placeholders.

 33

3.3 Test Cases
Test problems that exercise the important code features and models were identified or created during

this task. The test cases were based on current installation problems, problems from the DA3-1, user
problems, or were specifically developed during this task. Many of the installation and DA problems
were modified to provide expanded testing of code features. A brief description of each input file is
provided in Table 3.1.1. The table identifies the original source of the input file and provides a reference
when available. The number of cases that each input file runs is also given.

Table 3.2.1. Input file descriptions.
Input file Description Source1/

Reference
Cases

2phspump.i Tests two-phase pump head degradation as a function of void
fraction alone and as a function of void fraction and pressure.

I / 3-8 2

3dflow.i Simulates 3-D flow of single-phase liquid, single-phase vapor, or
two-phase flow in a 3x3x3 Cartesian grid with either 1-D or 3-D
momentum equations.

I / NA 18

ans.i Tests decay heat options with the point kinetics model. The problem
tests fission power types, fission product types available with each
ANS standard, and the G-factor contribution to the decay heat.

I, DA / 3-
1

9

boronm.i Tracks a square wave in boron concentration through a constant area
pipe with and without Godunov numerics.

I / 3-2 4

crit.i Tests Ransom-Trapp and Henry-Fauske critical flow models for a
range of stagnation conditions including subcooled, two-phase, and
superheated in a small horizontal pipe. Also tests cases with no
choking allowed and homogeneous flow.

N / NA 4

cyl3.i Tests the metal water reaction model for steam flowing past the right
surface of a cylindrical heat structure.

I / 3-3 1

drift.i Not Available yet.
Tests the drift flux correlations used to calculate interphase friction
for the bubbly and slug flow regimes in vertical components. Tested
are all the geometries from Table 6.1-1 of Volume 4. This includes
small/intermediate/large pipes, narrow rectangular channels, and
bundles. Also tested are all flow ranges, including high and medium
upflow, low flow, and medium, high, and very high downflow.

N 0

duklerm.i Tests the CCFL model using Dukler-Smith air-water countercurrent
flow data. Wallis, Kutateladze, and Bankoff correlations are tested.

DA / 3-1 5

eccmix.i Models a portion of the cold leg of a typical PWR during ECC
injection.

N / 3-9 1

edhtrkm.i Based on the Edward’s pipe installation deck, edhtrk.i that simulates
a rapid blowdown of a pipe with extras including reactor kinetics,
heat structure cosine temperature problems, and many control
variables. Deck edhtrkm.i adds all remaining control variable types,
except the shaft, and has separate cases to simulate the blowdown of
h2o, d2o, h2on, h2o95, hen, and an air/water mixture.

I / NA 5

eflag.i Simulates blowdown of one vessel into another to check the effect of
the e-flag on the thermodynamic state in the downstream vessel.

N / NA 2

enclss.i Steady-state calculation of a graphite stack using the heat conduction
enclosure model.

I / NA 1

 34

fric.i Tests various single-phase wall and junction friction models. Cases
include turbulent flow with and without heated wall effect, laminar
flow with and without shape factors, user input equations for wall
and form friction, and abrupt area change options.

N / NA 14

fwhtr.i Represents a tube-in-shell feedwater heater. I / 3-4 1
gota27.i Simulates rod-to-rod radiation in a 64-rod bundle in low-pressure

steam using the radiation enclosure model.
I / 3-10 1

hse.i Simulates two-phase flow through a horizontal tee with offtakes
coming off the top, bottom, or side face of the horizontal pipe.

N2 / NA 3

httable.i Exercises structure boundary conditions related to heat flux and heat
transfer coefficient in a simple model of a pipe and heat structure.

N / NA 3

httest.i Simple model of a pipe and heat structure that achieves various heat
transfer regimes for heat transfer packages 1, 111, and 134 by
varying initial and boundary conditions. Also tests the non-
equilibrium volume option.

N / NA 9

hxco2m.i Tests the normal and alternate heat structure-fluid coupling models
in a steady-state model of a countercurrent, once-through heat
exchanger with lead-bismuth on the shell side and supercritical
carbon dioxide inside the tubes.

I / 3-12 2

jetjun.i Simulates insurges and outsurges of liquid into a pressurizer with
and without the jet junction model.

N / NA 2

jetpmp.i Tests jet pump performance over a range of suction and driveline
flows.

I / NA 1

l31acc.i Represents the accumulator response during a slow depressurization
during LOFT Experiment L3-1.

DA / 3-1 1

l2-5-emA.i Tests Appendix K options during a LOFT Experiment L2-5, which
simulates a loss-of-coolant accident initiated by a large break.

N / 3-14 1

neptunus20m.
i

Models pressurizer insurge/outsurge experiment with spray. I, DA/3-1 2

pack.i Vertical fill problem that illustrates the performance of the water
packing model when subcooled liquid is injected into superheated
steam from below. Tests both the semi- and nearly-implicit options.

N3 / 3-5 4

pitch.i Tests an inertial check valve with movement. I 1
radial.i Models pure radial, symmetric flow problem in a two-dimensional

hollow cylinder. There is no azimuthal flow.
DA / 3-1 1

rcpr.i Tests the performance of a recompressing compressor in a
supercritical CO2 cycle.

I / 3-6 1

refbun.i Tests two-phase flow and heat transfer with horizontal and vertical
bundles that exercise the Groeneveld and PG CHF correlations and
correlations for narrow, rectangular channels.

I / NA 1

regime.i Tests the standard horizontal and vertical flow regimes by adjusting
flow boundary conditions through a simple pipe. Both the pre-CHF
and post-CHF regimes are tested for the vertical pipe.

N 22

rigidbody.i Models pure azimuthal, symmetric flow problem in a two-
dimensional hollow cylinder. There is no radial flow.

DA / 3-1 1

rtheta.i Models flow in a two-dimensional hollow cylinder with symmetric
flow in both the radial and azimuthal flow directions.

DA / 3-1 1

rtsampnm.i Tests the axial heat source options using nodal kinetics. Based on
typpwr.i, the deck also tests the radio-nuclide transport model.

I / NA 1

rtsamppm.i Tests various axial heat source options, including those from tables, I / NA 1

 35

control variables, and reactor kinetics. This problem is based on
typpwr.i and uses point kinetics. The problem also tests the radio-
nuclide transport model.

slab3.i Tests the metal water reaction model for steam flowing past the right
surface of a rectangular heat structure.

I / 3-3 1

sphere3.i Tests the metal water reaction model for steam flowing past the right
surface of a spherical heat structure.

I / 3-3 1

state.i Tests various fluid states, including subcooled liquid, superheated
vapor, two-phase, high-pressure liquid, high-temperature vapor, and
supercritical, for h2o, h2on, d2o, and new helium.

 24

todcnd.i Models heat transfer from hot wall with the reflood and two-
dimensional heat conduction models.

I / NA 1

turbine9.i Multi-stage steam turbine with moisture separation. All four types
of turbines are tested.

I / 3-7 1

typ1200.i Models small-break LOCA in a typical pressurized water reactor.
Runs 1200 s and tests a variety of models. Based on the original
typpwr.i model, but more consistent with current user guidelines.

I / NA 1

typ_kindt.i TYPPWR input model with nodal kinetics, Krylov solver, and
independent kinetics timestep.

N / 3-15 2

valve.i Models opening and closing of each type of valve, except relief. N / NA 5
varvol2.i Uses the variable volume model and a general table to vary the fluid

volume of a single-volume filled with liquid.
I / 3-11 1

Footnotes:
1. I = installation problem, DA = DA case from Reference 3-1, N = New input model developed for this

task.
2. Based on UP 10044.
3. The water packing model does not come on with the nearly implicit option in Version 403t, which

differs from the results presented in Ref. 3-5.

All input decks listed in Table 3.2.1 are used for null testing.

 36

3.4 Verification Directory and Makefiles
The Test suite is organized into a verification directory, Verify, with subdirectories of tests. The

running of the tests is controlled by Makefiles.

The main Verify directory contains a single subdirectory for each test case listed at the top of the
Features-Decks Matrix. It also contains the principle Makefile, its include files, the template Makefile,
set_Makefile, for each of the subdirectories, directories for utility scripts. Within the subdirectories reside
the input files for Category 1 and 2 testing, namely the original input deck and a restart deck. There is no
Category 3 input file; Category 3 decks are generated from Category 1 decks as described in Section 5.
Initially, the only other files that may be present are APT Plot script files.

Makefiles provide several advantages over scripts:
 Gmake allows parallel threading, so two jobs can run on a single core and many jobs can be run

simultaneously.
 Dependency lists can be employed to naturally force base case runs whenever the restart file is not

available.
 An include-file can set the variables for the Makefile relative to any version of the code and all

relevant paths. Then the Makefile remains the same for every code test (new version or updated), only
the include file changes for each such test.

The principle Makefile has many functions implemented as Makefile targets. Its major functions are
to run null, restart, and backup test suites, and to perform Test (1.1.5) for each suite. The test suite is
comprised of the collection of test problems listed in the include file Make.tests. The Make.dirs include
file specifies the paths to the Verify-directory, executables, fluid property files, license file, etc.

When the principle Makefile is invoked for null testing from a central platform, such as a machine in
the INL cluster, it makes verification runs the following happens:
1. A folder, with the path and name specified by MACHNAME in the include file, is created unless it

already exists.
2. Unless one already exists, it creates a folder/directory named Verify within MACHNAME.
3. If a Verify folder already exists in the machine-name-folder, a copy of the folder corresponding to the

requested machine is made therein. It has the same name, but with “_old” postpended.
4. Only 2 copies of verification folders of the same name are kept. If there is already an “_old” folder, it

will be deleted prior to #3 above.
5. The Makefile moves verification files that are generated to MACHNAME the new Verify folder.
6. It compares matching verification files in two verification folders to produce a single result (success

or fail). Comparisons are made via Linux “diff” utility applied after removing date, time, and version
information.

The Makefile also has targets for comparing restart and backup runs as explained in Sections 4 and 5.
It produces files in the MACHNAME directory named NOTREST and NOTBACK which list the names
of the input tests that failed each kind of testing. The Makefile allows the Category 1, 2, and 3 tests to be
run separately or all three at once. When testing succeeds, the Makefile gives the following messages:

 For null testing: ‘verified’.

 For restart testing: ‘Successful Restart Tests’.

 For backup testing: ‘Successful Backup Tests’.

 37

3.5 Comparison on Identical Machines
To demonstrate null testing, verification files from RELAP5-3D/Version 4.1.3 run on two different

but “identically” configured platforms, FBUILD and FBUILD2 are shown in Figures 3.5.1 and 3.5.2.

Figure 3.5.1. Verification File for Edward’s Pipe from INL Enclave Computer FBUILD

RELAP5-3D/Ver:4.1.3 fbuild
Time compiled: Aug 14 2013 16:12:07
Date and Time of run: 13/08/14 16:54:20

Case 1 edward's pipe problem base case with extras

Dump 1 Advancement= 109 time= 1.0000E-01
P= 4.9365983737086219E+07 401878A1EFDE58D75B00000000000000
Uf= 1.9649507480408072E+07 40172BD3E37AFC05FEC0000000000000
Ug= 5.4520489485535964E+07 40189FF554BE260AE000000000000000
VOIDg= 7.0158488970410998E+00 4001C103AB179E074A00000000000000
QUALa= 0.0000000000000000E+00 0
Boron= 0.0000000000000000E+00 0
Vf= 2.0448213290728118E+02 400698F6DA1FDA3236D4000000000000
Vg= 2.3165076689908255E+02 4006CF4D3151A9C1FEC1000000000000
RHSth= 0.0000000000000000E+00 0
SOLth= 5.2542461771631456E+04 400E9A7CEC6D54CEA4E0000000000000
Error= -8.5282658356481664E-05 BFF165B38EA0ADAA2000000000000000
Temp= 1.1047897158084513E+05 400FAF8EF8B985B33F57500000000000
Flux= 6.4046362410846550E+10 4022DD2EBDE55B16F000000000000000
dtsum= 3.0000000000000001E-03 3FF689374BC6A7EFA000000000000000
Trips= -3.9020138535691576E+00 C000F37530A0CF29DB80000000000000
Cntrl= 3.7065329809843512E+06 4014C47527D90E52D0F595356B020000
Rdc:Crnt,Extrp,Mass,Prop,Qual= 0 2 0 2 0
Rpt:Air,DelP,Flip,Jpack,Vpack= 0 0 0 0 0

Dump 2 Advancement= 509 time= 5.0000E-01
P= 1.1610017826711973E+07 4016624F43A746CAAC00000000000000
Uf= 1.3706563288757732E+07 4016A24A8693D80DB180000000000000
Ug= 5.3792556235069888E+07 40189A67961E16C52400000000000000
VOIDg= 2.0127747744316551E+01 4003420B4137FFA34180000000000000
QUALa= 0.0000000000000000E+00 0
Boron= 0.0000000000000000E+00 0
Vf= 2.8891214895206032E+02 400720E98297FE2E04B8000000000000
Vg= 9.1675057057565303E+02 4008CA6012B255E284C0000000000000
RHSth= 4.2453960924539154E+07 401843E5E476574C8C12980000000000
SOLth= 1.6144078316381101E+05 40103B50643EB635D838000000000000
Error= -9.9606881069212402E-05 BFF1A1C812FC4B5E8000000000000000
Temp= 1.0939814425864978E+05 400FAB5624EE2286FA5FD00000000000
Flux= 2.7820142401306227E+07 4017A8806E66BC014000000000000000
dtsum= 3.0000000000000001E-03 3FF689374BC6A7EFA000000000000000
Trips= -1.6980010000000000E+00 BFFFB2B0318B93469800000000000000
Cntrl= 8.6399604127190748E+05 4012A5DF815219769C2F2BB3AB200000
Rdc:Crnt,Extrp,Mass,Prop,Qual= 0 2 0 2 0
Rpt:Air,DelP,Flip,Jpack,Vpack= 0 0 0 0 0

CPU Time= 3.1995100000000004E-01 size 2764

 38

The comparison shows that only the header and footer information differ. These differences
correspond to different computer names, compile times, and execution times in the header and different
run times in the footer. When making comparisons for identical calculations, all lines with the keywords
RELAP5 and Time should be removed first. Then no differences are registered.

Figure 3.5.2. Verification File for Edward’s Pipe from INL Enclave Computer FBUILD2

RELAP5-3D/Ver:4.1.3 fbuild2
Time compiled: Aug 14 2013 16:49:37
Date and Time of run: 13/08/14 16:57:21

Case 1 edward's pipe problem base case with extras

Dump 1 Advancement= 109 time= 1.0000E-01
P= 4.9365983737086219E+07 401878A1EFDE58D75B00000000000000
Uf= 1.9649507480408072E+07 40172BD3E37AFC05FEC0000000000000
Ug= 5.4520489485535964E+07 40189FF554BE260AE000000000000000
VOIDg= 7.0158488970410998E+00 4001C103AB179E074A00000000000000
QUALa= 0.0000000000000000E+00 0
Boron= 0.0000000000000000E+00 0
Vf= 2.0448213290728118E+02 400698F6DA1FDA3236D4000000000000
Vg= 2.3165076689908255E+02 4006CF4D3151A9C1FEC1000000000000
RHSth= 0.0000000000000000E+00 0
SOLth= 5.2542461771631456E+04 400E9A7CEC6D54CEA4E0000000000000
Error= -8.5282658356481664E-05 BFF165B38EA0ADAA2000000000000000
Temp= 1.1047897158084513E+05 400FAF8EF8B985B33F57500000000000
Flux= 6.4046362410846550E+10 4022DD2EBDE55B16F000000000000000
dtsum= 3.0000000000000001E-03 3FF689374BC6A7EFA000000000000000
Trips= -3.9020138535691576E+00 C000F37530A0CF29DB80000000000000
Cntrl= 3.7065329809843512E+06 4014C47527D90E52D0F595356B020000
Rdc:Crnt,Extrp,Mass,Prop,Qual= 0 2 0 2 0
Rpt:Air,DelP,Flip,Jpack,Vpack= 0 0 0 0 0

Dump 2 Advancement= 509 time= 5.0000E-01
P= 1.1610017826711973E+07 4016624F43A746CAAC00000000000000
Uf= 1.3706563288757732E+07 4016A24A8693D80DB180000000000000
Ug= 5.3792556235069888E+07 40189A67961E16C52400000000000000
VOIDg= 2.0127747744316551E+01 4003420B4137FFA34180000000000000
QUALa= 0.0000000000000000E+00 0
Boron= 0.0000000000000000E+00 0
Vf= 2.8891214895206032E+02 400720E98297FE2E04B8000000000000
Vg= 9.1675057057565303E+02 4008CA6012B255E284C0000000000000
RHSth= 4.2453960924539154E+07 401843E5E476574C8C12980000000000
SOLth= 1.6144078316381101E+05 40103B50643EB635D838000000000000
Error= -9.9606881069212402E-05 BFF1A1C812FC4B5E8000000000000000
Temp= 1.0939814425864978E+05 400FAB5624EE2286FA5FD00000000000
Flux= 2.7820142401306227E+07 4017A8806E66BC014000000000000000
dtsum= 3.0000000000000001E-03 3FF689374BC6A7EFA000000000000000
Trips= -1.6980010000000000E+00 BFFFB2B0318B93469800000000000000
Cntrl= 8.6399604127190748E+05 4012A5DF815219769C2F2BB3AB200000
Rdc:Crnt,Extrp,Mass,Prop,Qual= 0 2 0 2 0
Rpt:Air,DelP,Flip,Jpack,Vpack= 0 0 0 0 0

CPU Time= 3.3494900000000000E-01 size 2764

 39

3.6 References

3-1. P. D. Bayless, Editor, “RELAP5-3D Code Manual Volume 3: Developmental Assessment,” IN-

EXT-98-00834, Vol. III, Revision 4.0, Idaho National Laboratory, PO Box 1625, Idaho Falls,
Idaho 83415, September 2012.

3-2. H. H. Kuo, “Boron Transport,” SDVD NRCL2537-29, Idaho National Laboratory, PO Box 1625,
Idaho Falls, Idaho 83415, February 1993.

3-3. N. A. Anderson, Metal Water Reaction Model Improvements, SDIVD, INL/MIS-12-27524, Idaho
National Laboratory, PO Box 1625, Idaho Falls, Idaho 83415, July 2012.

3-4. G. W. Johnsen and R. A. Riemke, “Verification Test Report Feedwater Heater Model,” R5/3D-04-
01, Idaho National Laboratory, PO Box 1625, Idaho Falls, Idaho 83415, March 8, 2004.

3-5. R. A. Riemke, “Water Packer Nearly-Implicit Scheme,” SDIVD Report, Idaho National
Laboratory, PO Box 1625, Idaho Falls, Idaho 83415, June 30, 2010.

3-6. C. B. Davis et al., “Modeling the GFR with RELAP5-3D,” 2005 RELAP5 International Users
Seminar, Jackson Hole, WY, http://www.inl.gov/relap5/rius/presentations.htm, September 7-9,
2005.

3-7. W. W. Weaver, “Upgrade Turbine Model,” Verification Test Report, R5/3D-03-05, Idaho National
Laboratory, PO Box 1625, Idaho Falls, Idaho 83415, June 25, 2003.

3-8. A. D. Hetro, “Two-Phase Pump Degradation Model,” SDIVD R5/3D-06-03, Idaho National
Laboratory, PO Box 1625, Idaho Falls, Idaho 83415, October 12, 2006.

3-9. S. Z. Rouhani, “ECC Mixer Component in RELAP5/MOD3,” EGG-EAST-8813, Idaho National
Laboratory, PO Box 1625, Idaho Falls, Idaho 83415, December 1989.

3-10. D. Caraher and R. Shumway, “Enhanced RELAP5/MOD3 Surface-to-Surface Radiation Model,”
EGG-EAST-8442, Idaho National Laboratory, PO Box 1625, Idaho Falls, Idaho 83415, February
1989.

3-11. W. L. Weaver, “Variable Volume Model, Verification Test Report,” R5/3D-98-19, Idaho National
Laboratory, PO Box 1625, Idaho Falls, Idaho 83415, November 30, 1998.

3-12. W. L. Weaver, “Alternate Heat Structure – Fluid Coupling Model,” Verification Test Report, Idaho
National Laboratory, PO Box 1625, Idaho Falls, Idaho 83415, June 2006.

3-13. C. B. Davis, “Improved Accuracy for Two-Phase Downflow Scenarios,” Idaho National
Laboratory, PO Box 1625, Idaho Falls, Idaho 83415, September 2012.

3-14. C. B. Davis, “Additional Working Fluids in the Appendix K Version of RELAP5-3D,” Idaho
National Laboratory, PO Box 1625, Idaho Falls, Idaho 83415, September 2012.

3-15. D. Barber, “RELAP5-3D New Development, Task 1: Asynchronous Time Advancement
Methodology,” ISL Document No: ISL-ESD-TR-12-03, Information Systems Laboratories, Inc.,
2235 East 25th St. Suite 260, Idaho Falls, ID 83415, February 2012.

3-16. C. Gross, “Restart and Backup Testing,” Purchase Order Number 7001655, Amendment 3, BMPC,
Sep 26, 2012.

 40

4. RESTART TESTING
The RELAP5-3D restart capability4-1 provides a means to continue a previous calculation from some

point after input processing concluded, possibly from the end of the previous run, or an intermediate point
in the calculation. Each restart record contains virtually all calculation parameters (E.G. pressures,
temperatures, void fractions, flow rates, etc.) for the entire transient calculation4-2.

The purpose of the restart test suite is to ensure that the restart capability “performed perfectly” for
the tested features. By this it is meant that for all problems in the restart test suite, a restart run from an
intermediate record in the restart file produces the same verification file dumps as the base case for all
common timesteps.

This sort of restart testing has recently been systematized at another national laboratory for another
TH code4-3. The restart test developed at INL is very similar to that one, including the method of reporting
via the Tests-Features Matrix Restart column explained in Section 3.1.

Section 4.1 explains what RELAP5-3D restart is, how it is performed, and what can be done with it.
Section 4.2 gives the functional requirements. Section 4.3 explains restart testing with particular attention
to the naming of files, particularly when many input cases are in the same deck. Section 4.4 summarizes
the high priority user problems that were generated by this task. Section 4.5 is references.

 41

4.1 Background
The restart option is a means to continue a previous RELAP5-3D calculation4-4 from some point after

input processing concluded. This point can be the end of the previous run, the first restart record written
immediately after input processing, or some point in between. The previous calculation must be of either
NEW or RESTART type4-1. The restarted run may be an extension of the previous run or may change the
input model before beginning the calculations4-3. For an extension restart, the input stream need only
contain the control cards that effect the continuation of the problem. For modifications to the input model
on restart, new or replacement input cards can produce virtually any necessary model change.

Since restart testing requires the model to remain exactly the same, this latter capability is not allowed
in the test suite. The primary control cards present in a Category 2 restart input deck are 1004-1, 1034-5,
1044-5, 1994-6 and 200-series cards4-7.

Restart is an important feature to code users and can be used in several ways. When it was developed,
computer time and disk storage cost money. It saved money to restart from a saved position so that in the
event of failure (code failure, computer loss of power, or exceeding the batch time limit on the run), the
calculations could resume from the last restart record. Thus, code calculations were saved to a restart file
at multiple times in the transient. There were even built-in controls in the 105-card4-5 for writing a restart
dump a certain number of seconds before the end of the requested CPU-time.

Restarts are employed by code users to perform long-running calculations in pieces4-4. A user runs a
job overnight, checks the results in the morning, and decides if calculations are proceeding as expected or
if some action is needed such as starting over with input changes or modifying of trips, controls, tables,
etc. The calculation can be continued in this way with periodic stops and restarts for many cycles.

A common use of restart is to run an input deck to steady-state conditions, then restart the run from
that point for a new transient with an operational or accident scenario. The restart is seen as starting the
new run at time zero and is often referred to as a “time-zero restart.”

Another possible use of restart is to begin a new run from the middle of a previous run at some point
in the transient where plots revealed interesting or unusual behavior. RGUI users sometimes restart with
smaller timesteps so that the phenomenon can be observed more closely.

Restart has also been used to circumvent code failure. If a code error causes a failure, in many cases
the code can continue past the point of the error if a restart is made from a previous restart record with a
different timestep.

Unfortunately, users have reported that the code sometimes does not produce the same calculations on
restart as it does when the code had run straight through. This negatively impacts code usability for all of
the purposes listed above. Correcting this issue is the primary goal of restart testing.

 42

4.2 Functional Requirements
The functional requirements for restart, or Category 2, testing are summarized as follows:

1. A collection of restart input problems that test all "important" features of RELAP5-3D.
 Develop a collection of input problems that test the most commonly used code features.
 This test suite will be used to ensure that the tested features can perform a "perfect restart.”
 This test suite may be smaller than the one used in Task 2.

2. A simple method for performing restart testing
 Provide an easy and automated means to perform the restart testing.
 This method executes all of the problems in the test suite at least twice.

o In the first execution, RELAP5-3D writes a restart record at an intermediate point in the
solution.

o The second execution starts from the intermediate restart.
o The intermediate value cannot be the initial time-zero restart record.

 Comparison of verification files at the transient end time must establish the success of the restart.
o The statement of success or failure must be clear and unambiguous

If any problems fail the restart test, a high priority User Problem shall be submitted to the Idaho

National Laboratory.
There are similarities to Category 1 testing in that two different runs are tested by comparing

verification files and an unmistakable message is given about the comparison. The important difference is
that the two runs that are compared must produce the exact same calculations for the restart to be correct
while Category 1 testing may produce differences due to code upgrades and corrections.

 43

4.3 Restart Testing and Naming
As indicated in Section 1, restart testing is similar to Category 1 or null testing in that two runs are

compared. These two runs are made, not by comparing verification files from two different versions of
the code, but rather by comparing a run to the end of a transient with a run made from a restart record to
the same end time. The same test, namely Test (1.1.5) is applied.

A perfect restart test seeks to recognize if restart is seamless. This means the restart run must produce
identically the same calculations for all quantities, down to the final bit, as if the calculation had not
restarted. Verification files produced by the base-case and restart must be identical.

According to Theorem 1.2.2, restart Test (1.1.5) commits no Type I Error. It has significance level, α
= 0. This means that the restart will not report differences that do not exist, if the test is programmed
correctly.

Consideration should also be given to a second aspect of restart testing, namely version-to-version
comparison. Version-to-version restart testing checks if coding updates affect restart performance
between two versions by comparing restart verification files between them. The question is whether or not
an error between two versions can escape detection by restart testing and necessitate version to version
comparison.

Suppose the code produces a perfect restart of incorrect null case calculations. These incorrect results
would be found by Category 1 or null testing and would not be found by restart testing by itself since the
restart is perfect. This shows that restart testing is not sufficient by itself and must be coupled with
Category 1 testing. Alternatively, if the Category 1 test shows null case comparison is perfect, and the
restart cases are different, one of the two restarts is not a perfect restart. This will be found by the restart
test of one code version or the other when the verification files of the null and restart runs are compared.
Again, it is unnecessary to compare restart verification files between two code versions if the null case
runs are compared.

All input decks in the verification test suite are candidates for restart testing. Restart files are therefore
provided for all the verification test cases listed in Section 3. Input files have specific requirements to test
for perfect restarts.

First, timecards of the restart-suite input files must create an intermediate restart dump. It is preferable
to select this time so that something interesting is occurring in whatever key parameter the deck tests.

Second, any verification dumps other than the automatic one at the end of the entire transient must
occur immediately after the timestep of that intermediate restart. If any dump occurs before the restart, the
comparison will show differences because the restart verification file will not have a dump at that time.

Third, for decks that have several input cases, restart files must be named so that each case can be
restarted separately. The restart input deck can restart all of the cases.

Other simple differences can be noted. The restart deck must specify restart on the 100 card. It must
not contain any cards that initialize anything, and for each case, the title cards must match.

The following naming convention was established. If an input file has a base filename with extension
“i” for “input,” then the restart file has the same base filename with “r.i” as its extension. Restart files are
named with the case number appended to the base filename after an underscore and use the “r” extension.
Plot files have the same name as restart files but use the “plt” extension. This is summarized in Table
4.1.1 for both a single case deck and for decks with other input cases.

For the single case deck, the same restart file, Base.r, is used for the original run and the restart. For a
multiple case deck, there is one restart file for each input case. It is named with its case number appended
to the base name after an underscore. For each restart file there is a corresponding plot file named like the
restart file but with the “plt” extension. Unlike the numerous restart and plot files generated for input

 44

cases, there is only one verification file with all dumps for all cases contained within. It has the “vrf”
extension.

Table 4.1.1. Restart Suite Naming Convention
Single Case Deck
Original input run Base.i Base.p Base.r Base.plt Base.vrf
Restart input run Base.r.i Base.r.p Base.r Base.r.plt Base.r.vrf
Multi Case Deck
Restart of 1st case Base.r.i Base.r.p Base_1.r Base_1.plt Base.r.vrf
Restart of 2nd case Base_2.r Base_2.plt
Restart of nth case Base_n.r Base_n.plt

The restart input is stored in the same directory as the input file for the null test. This facilitates the
comparison of the verification files which can be stored in the same places.

The restart and original deck verification files of a given input model, Base.vrf and Base.r.vrf , are
compared to detect imperfect restarts. The comparison is similar to the version-to-version comparison of
Section 3 in that all the same lines of the verification file, such as those recording time, are excluded. The
test fails for a given input model if there are differences between the two files.

If differences are noted, the name of the input file is recorded in the main verification directory in a
file named NOTREST. After all test cases are run and comparisons are made, NOTREST is examined. If
it is empty, the restart testing was considered successful and the success message is given. Otherwise a
failure message for the restart testing is given.

Implementation of the testing is carried out through Makefiles. As with null testing, the principle
Makefile is located in the main verification directory, Verify, and performs the verification testing in the
same way. It accesses two include files in Verify, named Make.tests and Make.dirs. The latter lists the
location of the executables, fluid properties files, and other auxiliary files. The former lists the restart test
directories/tests. All the problems used in null testing are restarted. Thus all code features listed in
Section 3.1 are restart tested.

The user can, of course, delete names from the list or add directories with a null case and restart deck.
The addition or deletion of files from the restart test suite can be accomplished by changing the list in
Make.tests. The list can also be overridden on the “make” command line with whatever target the user
selects.

When the principle Makefile runs, it links a copy of the test case Makefile, called set_Makefile and
located in Verify also, to each test directory. The test directories typically contain the input files for the
null test and the restart test though other files are sometimes included, such as APT Plot scripts.

The set_Makefile can prepare for, make RELAP5-3D runs, and perform a variety of cleanups. It can
compare runs and store differences. If there are differences it can report the name of the base case in file
NOTREST. The default setting is to do all of this for a restart test.

 45

4.4 Restart User Problems Summary
The restart verification suite has been used to test the restart capability of RELAP5-3D/Version 4.1.2.

Many restart problems failed to produce the exact same results. All of these have been turned in as high
priority (level 2) user problems. Most have been corrected at the time this report is being written. The list
is given in Table 4.3.1.

Table 4.3.1. Summary of High Priority Restart User Problems

UP# Title of User Problem Resolution Version Priority Modified

13085 4.1.2 httest.i restart fails in Case 9 4.1.2 2 06/21/13

13084 4.1.2 httable.i restart fails in Case 2 fixed 4.1.2 2 07/10/13

13083 4.1.2 fric.i restart fails in Case 13 4.1.2 2 06/21/13

13082 4.1.2t eflag.i restart deck SOMETIMES fails on Case 2 fixed 4.1.2 2 06/24/13

13054 4.1.2t valve.i restart and base runs seriously differ 4.1.2 2 06/24/13

13053
4.1.2 two phase pump base case verification file differs
slightly from restart

4.1.2 3 06/21/13

13052 4.1.2 turbine9.i restart quits with input error message fixed 4.1.2 2 06/21/13

13051 4.1.2 rtsamppm restart core dumps fixed 4.1.2 2 06/20/13

13049 Restarts using MA18 and PGMRES do not work 4.1.2 2 06/20/13

13048 4.1.2 jetjun restart and base runs differ on both cases 4.1.1 2 06/20/13

13047 4.1.2 hxco2m restart base and restart differ on Case 2 fixed 4.1.1 2 06/20/13

13046
4.1.2 floreg: verification files of most restart cases differ
from base run

4.1.1 2 06/18/13

13045 4.1.2 edhtrkm restart core dump on Case 2 fixed 4.1.1 2 06/18/13

13044 4.2.1t cyl3.i restart slightly differs from base case fixed 4.1.1 2 06/18/13

13043 4.1.2 crit.i base case verification file differs from restart 4.1.1 2 06/18/13

13042 Boronm restart differs from base case fixed 4.1.1 2 06/18/13

13041 Restart failure: state.r.i case 11 w/ glibc mem corruption fixed 4.1.1 3 06/10/13

13040 Restart of httest case 6 fails with memory corruption fixed 4.1.1 3 06/10/13

13039 Floreg case 8 restart creates glibc memory corruption fixed 4.1.1 3 07/10/13

13038 Restart core dump for typkindt in idetector 4.1.1 3 06/20/13

13037 Error in restart of l2-5 deck 4.1.1 1 06/05/13

13035 Restart of ans.i0, ans.r.i, takes more advancements. 4.1.1 3 04/26/13

13033 Restart fails for rtsamppm.r.i. fixed 4.1.1 3 04/29/13

13032 Restart fails for rtsampnm.r.i fixed 4.1.1 3 04/29/13

13031 Restart of pitch produces unreliable information. 4.1.1 3 04/25/13

Many of those that remain are caused by an inaccuracy in the last bit of the timestep on restart.

 46

4.5 References

4-1 The RELAP5-3D Code Development Team, RELAP5-3D Code Manual Volume V: User’s
Guidelines, INEEL-EXT-98-00834, Revision 4.0, Section 4.1.2, pp. 4-2, Idaho National
Laboratory, PO Box 1625, Idaho Falls, Idaho 83415, June, 2012.

4-2 The RELAP5-3D Code Development Team, RELAP5-3D Code Manual Volume V: User’s
Guidelines, INEEL-EXT-98-00834, Revision 4.0, Section 3.1.4.2, pp. 3-17 to 3-18, Idaho
National Laboratory, PO Box 1625, Idaho Falls, Idaho 83415, June, 2012.

4-3 D. L. Aumiller, G. W. Swartele, J. W. Lane, F. X. Buschman and M. J. Meholic, “Development
of Verification Testing Capabilities for Safety Codes,” Section 7, The 15th International Topical
Meeting on Nuclear Reactor Thermal - Hydraulics, NURETH-15, NURETH15-145, Pisa, Italy,
May 12-17, 2013.

4-4 The RELAP5-3D Code Development Team, RELAP5-3D Code Manual Volume II: User’s Guide
and Input Requirements, INEEL-EXT-98-00834, Revision 4.0, Section 8.7, pp. 8-31 to 8-34,
Idaho National Laboratory, PO Box 1625, Idaho Falls, Idaho 83415, June, 2012.

4-5 The RELAP5-3D Code Development Team, RELAP5-3D Code Manual Volume V: User’s
Guidelines, INEEL-EXT-98-00834, Revision 4.0, Sections 4.1.5-4.1.6, pp. 4-4 to 4-5, Idaho
National Laboratory, PO Box 1625, Idaho Falls, Idaho 83415 June, 2012.

4-6 G. L. Mesina, “Implementation of a New DTSTEP Algorithm for use in RELAP5-3D and
PVMEXEC Completion Report,” INL/EXT-11-20798, Idaho National Laboratory, PO Box 1625,
Idaho Falls, Idaho 83415, Apr, 2011.

4-7 The RELAP5-3D Code Development Team, RELAP5-3D Code Manual Volume V: User’s
Guidelines, INEEL-EXT-98-00834, Revision 4.0, Section 4.2, pp. 4-8 to 4-9, Idaho National
Laboratory, PO Box 1625, Idaho Falls, Idaho 83415, June, 2012.

 47

5. Backup Testing
A backup is the action of repeating an advancement. The code can back up and use the same time step

or a smaller one. An advancement with the same step is often called a timestep repeat and the other is
called a timestep reduction. Backup testing seeks to determine if the code can repeat a timestep correctly.
This requires resetting conditions to the beginning of timestep values and redoing the advancement. If this
is programmed correctly, and the same timestep is used, the transient calculation with and without the
backup will produce the same result. If the timestep were cut, the calculation would be different from that
point forward. For this reason, only backups with the same timestep, namely timestep repeats, are
considered. The backup testing performed here is really timestep repeat testing, but shall be referred to as
backup testing for simplicity.

There are 2 situations that can cause the code to repeat an advancement without timestep reduction:
1. Direction from the PVM Executive.
2. Internal conditions that cause the code to set its “success” flag to 5

PVM Executive direction is not considered in this task. This task is specific to RELAP5-3D alone.

Backup testing seeks to determine if a “perfect” code backup can be made on any given timestep. The
user artificially induces a backup by causing RELAP5-3D to set its flags to indicate a backup condition,
even though no actual conditions that cause a backup exist. In theory, the code will produce the same
calculations on both attempted advancements, the first and the one it is forced to take because of the
artificial setting of the backup condition flags.

To examine code backup capability, Test (1.1.5) is applied. Two runs are made, one uses the original
deck of a given input model and the second uses a copy of that deck with a forced backup. The two runs
are compared and conclusions drawn.

According to Theorem 1.2.3, the backup test will not indicate that there are differences when none
exist (if the verification programming is correct). However, it is possible that differences do exist but are
not found by the test. The power of Backup Test (1.1.5) can be increased by increasing the thoroughness
of the testing. There are three ways to do that:

 Increase the number of variables written to the verification file
 Increase the features of the code tested in the backup test suite
 Increase the number of forced backup runs for a given input deck

 Section 5.1 gives some background on code backups and the functional requirements. Section 5.2
explains some of the intricacies of testing backups. Section 5.3 describes how backup testing is
implemented in the code. In Section 5.4 special considerations for construction of the test input decks are
discussed. The results of applying backup testing to RELAP5-3D, including the User Problems it
generated, are found in Section 5.5. Section 5.6 lists the references.

 48

5.1 Background
Three mechanisms cause the code to back-up and repeat an advancement with the same timestep:

1. Appearance of a noncondensable in a control volume (often called air appearance)5-1.
2. Velocity flip-flop5-2 at a junction
3. Water packing/stretching5-3 in a control volume

The code takes the condition into account when building the discrete form of the governing equations5-1, 5-

2, 5-3, producing a system whose solution better reflects the physical conditions that cause backup.

5.1.1 Noncondensable Gas Backup Summary

The appearance of a noncondensable gas in a control volume that had none on the previous timestep
causes problems with the derivatives of the phasic properties with respect to Xn, the noncondensable gas
quality. At the beginning of the advancement, the derivatives are zero since there is no such gas in the
volume. At the end of the advancement, the derivatives would need to be zero for a consistent state as
described in the RELAP5-3D Code manuals5-1, but are not. The situation is detected whenever the
noncondensable quality in a volume is zero at the beginning of the advancement and the flux of
noncondensable gas into the volume during the advancement is greater than a small noncondensable
source term.

When this condition is detected, an explicit mass balance on the gas phase in the volume is used to
estimate the noncondensable quality and gas fraction that would result from the flux of noncondensable
gas into the volume. The derivatives of the phasic properties are computed from the estimated
noncondensable gas quality. The backup uses these and the estimated gas fraction to construct the
discretized governing equations when the timestep is repeated.

5.1.2 Velocity Flip-flop Backup Summary

For velocity flip-flop5-2, the convective terms in the governing equations are calculated with donored
properties determined by the direction of the phasic velocities. When the final velocities differ in direction
from the explicit velocities used to define the donored properties, mass and energy errors may result due
to the incorrect properties used in the discrete system of equations. A velocity flip-flop has occurred when
one of the junctions, j, in a system satisfies the following (mass and energy) condition:

A B > 0.2 Aj (5.1.1)

where

Aj = , min , , 5 , , , , ,

Bj = min , 5

The junction liquid fraction, liquid density, liquid specific internal energy, void fraction, gas density, and
gas specific internal energy, respectively, , , , , , , , , , , , are based on the

beginning of timestep explicit velocities, denoted by the superscript “n,exp.” The same variables from the
end of the calculation have the superscript n+1.

The backup repeats the advancement with the same timestep size but using the donor properties based
on the calculated final velocities.

 49

5.1.3 Water Packing Backup Summary

Consider a control volume that is nearly full of liquid with a net influx of mass. The density-pressure
relationship used to calculate the new time pressure uses the beginning of timestep values for the state
properties and derivatives. The compressibility of this low void fraction control volume is dominated by
mass transfer. However, the mixture of liquid and vapor/gas corresponds to a highly compressible fluid;
that is, significant volume changes can easily occur with very little change in pressure.

It can happen that on some advancement, the net volume influx of liquid during the timestep can be
larger than the vapor/gas volume in the cell. On the following timestep, since liquid influx momentum
from the beginning of the timestep is used, and because the liquid is nearly incompressible, the large
liquid influx into cell filled with liquid causes a large increase in pressure.

The computed pressure spikes caused by water packing are unphysical. In the neighborhood of these
spurious numerical pressure spikes, the calculated phasic velocities may increase substantially, reducing
the material Courant stability limit, resulting in smaller time-step sizes and reduced computational
efficiency. Furthermore, water packing may severely distort the transient solution by changing the void
distribution or driving the liquid completely out of an open system.

Water packing occurs in volume K whenever all the following conditions hold:
 the void fraction, αg ≤ 0.12
 liquid temperature = Tf < Ts = the saturation temperature
 volume K is vertically stratified
 the volume above it is highly voided
 and 	 	 	0.0023

where n is the advancement number at the beginning of the timestep.

The code adjusts the discrete system as presented in RELAP5-3D code manual Volume 15-3.

5.1.4 Value of Code Backup

Backup is an important code capability because it saves run time and prevents failures. Tracing the
logic flow in subroutine TRAN provides understanding of how the algorithm works. Currently, when the
code detects a backup condition, it jumps to the end of the transient loop (thereby bypassing all remaining
transient calculations including kinetics, PVM transfers, and control system calculations), restores the
data to beginning-of-timestep values (in DTSTEP), and returns to the top of the transient loop to starts the
timestep over with certain flags set to indicate which kind of backup to perform in order to adjust the
discrete system properly. This ensures that the restoration of data is correct. Moreover, the code saves
CPU time. However, backing up provides even greater savings.

As discussed in Section 5.1.3, if backups were not a code capability, the only other option would be
to halve the timestep, restore the data, and begin the timestep over. To understand the time-savings of
backup over halving the timestep, consider what would happen if the code recognized backup conditions
just as it does now, but applied halving instead of backup.

When a backup condition occurred, the code would halve the timestep and attempt to advance. The
timestep algorithm requires two consecutive successful steps before doubling the timestep size. If the first
step succeeded, the code would attempt a second advancement with the same timestep. If the second step
succeeded, the code would take twice as much computer time as one successful step with the backup
algorithm. However, there is no guarantee the backup condition would disappeared on either of the two
attempted advancements merely because the timestep was cut. If the condition was detected again, the
code would continue to halve the step size until an attempted advancement succeeded. If the step is cut

 50

twice, at least three advancements (two steps at ¼ the original size and one at ½ the original) are required
to advance as far as the original timestep.

Without backup logic, it is possible that the minimum timestep could be reached with the backup
condition still present. Unable to cut the timestep further, the code would be forced to print an error
message and stop, just as it does for a thermodynamic property error at minimal timestep size.

Even if the backup condition is mitigated by rebuilding the discrete governing equations with an
adjustment for the backup condition, one of the other two backup conditions can appear immediately after
the first and on the same attempted advancement. If that happens, the code takes another backup to clear
the conditions. After three backups at the same cumulative time, the code cuts the timestep. This prevents
the code from endlessly cycling between different backup conditions.

The code is much more computationally efficient with backup logic than without. Historically, the
code once had two forms of backup, partial and full5-5. Full backup is described above and was used in
PVM coupled calculations and in some nearly-implicit calculations. Partial backup sought to save even
more computational time by not returning to the beginning of the timestep, but instead backing up within
the hydrodynamic calculation far enough to rebuild the discrete hydrodynamic system for each type of
backup. This saved computer time, but had numerous implementation issues. It was eventually abandoned
for the simpler full backup algorithm.

 51

5.2 Functional Requirements
The original functional requirements for automated backup testing are summarized as follows:

1. A collection of input problems that test all "important" features of RELAP5-3D
a. Develop a collection of input problems that test the most commonly used features in RELAP5-3D

i. Use the test suite to ensure that the tested features can perform a Perfect restart
b. This test suite can be smaller than the one used in Category 1 testing
c. All code features that are absent from the Category 1 test suite must be identified.

2. A simple method for performing backup testing
a. Provide an easy and automated means to perform the backup, Category 3, testing.
b. This method must execute all of the problems in the test suite at least twice.

i. In the first execution, RELAP5-3D must fail timesteps at a user specified time or timestep
number, and repeat those timesteps at the same timestep size.

ii. The second execution must execute without the artificial backups.
c. Comparison of the verification results at the transient end time must establish the success of the

backup process.
d. In selection of the times to select for backup testing, consideration must be given to special

processes that may have special backup requirements.
i. Examples of such processes include: Entry and exit of choked flow; Entry and exit of CCFL;

Insertion and removal of fine-mesh heat transfer nodes in a reflood model.
3. The list of test problems provided for this task shall include the times or timestep numbers that are

used for backup testing. This method must provide an unambiguous statement concerning the success,
or lack of success, of the backup testing.

4. If any problems fail the backup test, a high priority User Problem must be submitted to the Idaho
National Laboratory.

A modification of the functional requirement 2d has been made to allow a more thorough method for
testing backup logic. The method forces back on every successful timestep. The reasons that this is
superior are explained in Section 5.3.

 52

5.3 Conceptual Intricacies of Backup Testing
To test backup, the user compares the results of a normal run with those calculated when input directs

the code to perform an artificial backup on one or more timesteps.

A natural backup occurs when the code recognizes that one of the three conditions listed in Section
5.1 has occurred after the discrete system has been solved. It sets a variable named “success” to 5 and a
flag named lpd(i)%lsucces to 5 (or possibly some other values that are not relevant here), where i is the
number of the hydrodynamic system (primary side of a power plant, secondary side, etc.) in which the
condition occurred. New programming allows these same two flags to be set to five via user input to
artificially create the backup signal.

Although there are three different mechanisms that cause a backup, in theory they are all equivalent
for forcing an artificial backup. In an artificial backup, neither the data nor the calculations that form the
discrete system of equations are supposed to differ. The discrete system should therefore be the same for
all three artificial conditions. Moreover, it should be the same as the system produced for the previous
normal attempted advancement of that same timestep simply because the values contained in the arrays
and other variables used to construct the discrete system should be the same.

Backup testing seeks to find if this is indeed the case. Test (1.1.5) compares verification files from
two runs, the normal run and the forced backup runs. Verification dumps could be made at specified times
but always occur on the final step. If the verification files have no differences, then the code has
performed a perfect backup. If not, a failure must be reported by the testing system and a high priority
user problem report generated.

It is important that the artificial backup be generated only on steps that have no natural backup. This
avoids causing a timestep cut from too many consecutive backups on the same advancement.

It is preferable to perform a backup on a timestep when the code is experiencing some other stressful
condition. Examples of such conditions include: entry and exit of choked flow; entry and exit of CCFL;
insertion and removal of fine-mesh heat transfer nodes in a reflood model. Though such conditions will
test the code under the most trying of circumstances, it is insufficient. For example, the same input model
may succeed when forced to backup at one time but not at another, so testing at a single point in time
could miss a code error. Also, developmental changes to the code can affect when the stressful conditions
occur. After developmental updates, the same test deck may miss the intended conditions entirely.

A much more thorough test ignores such conditions and forces backup at every timestep that does not
have a natural backup. This process was developed at another national laboratory5-4. It guarantees that
backups are forced on the most stringent conditions that occur, and on every other kind of condition that
the model generates. This procedure was chosen as the default form of testing.

It must be noted that such thorough testing causes the test set to run much longer. Test cases with
forced backups on all advancements that have no natural backups tend to run almost twice as long as the
corresponding original case. And the original case must be run as well. Therefore it is important to have
short-running problems in the test set.

The verification files from normal and backup runs can differ in several ways even when the two runs
produce exactly the same calculations.

1. The backup lists the user backup type (air appearance, flip-flop, etc.) on a line of output.
2. The line that records the number of repeat conditions should be different.
3. The number of attempted advancements will be different.
4. The number and time of verification dumps can be different.

To prevent detection of these nonessential differences, lines associated with items 1-3 are eliminated from
the verification files (null and backup) before the files are compared.

 53

Difference number 4 is complex. Consider comparing the verification dumps between an original and
forced backup run. A normal run must produce dumps at the same cumulative times as the forced backup
run. This can be done using advancement count because a linear relationship between the advancement
counts of the two runs exists as long as no natural backups occur. However, if one or more do occur, the
correspondence between the numbering of attempted advancement between the two runs becomes more
complex. Comparison based on attempted advancement count cannot be pre-programmed easily.

An alternative is to employ successful advancements rather than attempted advancements. The former
are not affected by backup conditions. Therefore, the meaning of 199-card Word 3, when it is an integer,
is successful advancement rather than attempted advancements as the code interprets it for Category 1 and
2 testing.

Another consideration for difference number 4 above is that if two or more different points in time are
selected for backup testing in a single input model, then a pair of runs must be made for each test in order
that the normal run have dumps on the same timesteps to those produced by the forced backup run,
otherwise a simple comparison of the verification files will show differences even if none exist.
Moreover, if dumps are made on every timestep of a thorough test that has backups on all timesteps, its
verification file could be large or exceed the 1 MB limit.

To overcome this issue associated with difference number 4, it was decided that thorough backup test
runs (there is a backup on every timestep, natural or forced) cannot dump to the verification file except on
the final timestep which is automatic. Other forms of backup testing perform dumps at their specified
times.

 This solves many problems in a simple manner and reduces file storage considerably. The initial
backup test is run using thorough testing. If differences are detected, one of the other three conditions can
be specified (air appearance, water packing, velocity flip-flop) and the code will make dumps at specified
times to compare against a normal run (which must make the same dumps). The way to specify these
options through code input are explained in the next section.

 54

5.4 Backup Code Implementation
To implement verification backup testing, a new subroutine was written and many were modified.

This section describes these developments.

5.4.1 Transient Coding

Tracing the logic flow of a naturally-occurring backup helps understand where to modify the code to
implement backup testing.

The transient controlling subroutine, TRAN, processes success conditions immediately after the call
to subroutine HYDRO. As indicated in Section 5.1, TRAN ignores all remaining parts of the transient and
proceeds directly to the DTSTEP section if the success-flag is 5. Within DTSTEP, first the termination
and repeat conditions are processed in Section 2. When the success-flag is 5, the code moves the old time
data into the new time locations, backs cumulative time up by one timestep, and proceeds to Section 11,
the finalizing stage. There the cumulative time advance by just as much as it was backed up in Section 2,
but attempted advancement count increases. Control returns to TRAN. In TRAN, the end of the time loop
is encountered and processing begins again at the top with the same cumulative time as in the previous
pass through the loop.

A new subroutine VERFBACKUP was written. It ensures that backups occur only:
 when backup testing is requested by the user
 on the user-specified time or times
 after a successful advancement
 when no natural backup occurs on the timestep
 when the verification file size limit is not exceeded

Subroutine VERFBACKUP sets the two success-indicator flags, succes and the flag lpd(1)%lsucces for
hydrodynamic system 1 (system 1 always exists if there are any hydrodynamic control volumes) and the
appropriate backup condition flag or flags on backup steps. When it forces backup it writes a message on
the printed-output file about the backup. It also remembers the cumulative time of the previous backup
and does not force the code to fake a backup until cumulative time increases. It does not interfere with a
legitimate backup, but will force one after a successful timestep.

In addition, it sets the following flags:
 lpd(1)%airap = 1 for air appearance
 lpd(1)%lpackr = 1 for water packing
 lpd(1)%vlflip = 1 for velocity flip-flop
 lpd(1)%airap = 1 for thorough testing with backups on all steps

Subroutines HYDRO calls VERFBACKUP immediately after the call to VFINL or VIMPLT when
the velocity field has been determined. HYDRO calls it only when verification testing is active.

Subroutine VERFSUM was modified to make no dumps on the verification file (call VERF_DUMP)
on non-terminal timesteps when verfaction is 5 (thorough all advancements backup testing).

5.4.2 Backup Input Coding

Subroutine RDEBUG was upgraded to include the new verification options for backup testing. As in
previous sections, this is implemented with the 199 card. The 199 card format is:

199 verify condition start end

 55

The condition keyword specifies the mechanism (air appearance; water packing or stretching; and
velocity flip-flop) that causes backup. These are the naturally occurring backup conditions as reported in
Section 5.1. A condition keyword, backall, is also provided to specify the thorough testing option which
performs a backup after every successful advancement. The 199 card “condition” keywords for these
testing mechanisms are summarized in Table 5.3.1.

Table 5.3.1. 199 Card Condition Keywords for Backup
Cause Condition

Keyword
air appearance backair
velocity flip-flop backvel
water packing backpck
Thorough testing backall

Module VERIFYMOD was modified to incorporate the backup testing feature. Variable verfaction
was expanded to have values to indicate backup conditions according to Table 5.3.2.

Table 5.3.2. Values of variable verfaction.
Value Description

0 No verification
1 Verification dumps requested by user
2 Backup for air-appearance
3 Backup for water packing
4 Backup for velocity flip-flop
5 Thorough testing, backup after every successful advancement

The write statement in VERFBACKUP verifies that the code does backup when verfaction has any of
the values 2-5.

When verfaction is 5, the coding makes backup verification dumps on the final step only. This allows
a single base case run to be compared with numerous backup runs at different advancements or times.

 56

5.5 Input Decks for Backup Testing
An important aspect of backup testing is the formation of the input decks. There must be two decks, a

backup input deck and an appropriate copy of the null test input deck. The backup input decks are
generated from the null test deck at the time of the testing. This is the only way to ensure that the null and
backup decks match perfectly in all ways (except for the two 199 cards that force backup testing).

It was noted above that “backall” testing makes a single verification dump on the final step only. This
arrangement simplifies the coordination of non-backup and backup run output. However, normal input
deck of the verification suite is designed to compare against the restart run. It produces two verification
dumps, the automatic one on the final step and one right after a selected restart write. It has an extra dump
that the “backall” run does not have.

 Therefore a copy of the normal input deck is made with its 199 card modified to dump on the final
step only. A second copy of the normal deck is created with its 199 card condition set to “backall.”

The following naming convention was established. If the normal input file is named Base.i, then the
corresponding input files for backup testing are named Base.b.i and Base.bk.i. As with restart, the normal
file extensions replace the “i” for the other output files. This is summarized in Table 5.4.1.

Table 5.4.1. Backup Suite Naming Convention
Base case input file Base.b.i Base.b.p Base.b.r Base.b.plt Base.b.vrf Base.bak
Backup of base case Base.bk.i Base.bk.p Base.bk .r Base.bk.plt Base.bk.vrf none

The two backup input are generated and stored in the same directory as the input file for the null test.

 57

5.6 Backup Testing
The backup and null case verification files of a given input model are compared to detect imperfect

backups. The comparison is similar to the version-to-version comparison of Section 3, excluding all the
certain lines of the verification file before the comparison is made. These lines contain unimportant or
non-calculated differences:

 Lines with date and time
 Number of repeats
 The RHS and Solution sums
 The backup information (which is not in the null case run).

The test fails for a given input model if there are differences between the two files. If differences are
noted, the name of the input file is recorded in the main verification directory in a file named NOTBACK.
After all test cases are run and comparisons are made, NOTBACK is examined. If it is empty, the restart
testing was considered successful and the success message is given. Otherwise a failure message for the
restart testing is given.

Implementation of the testing is carried out through Makefiles, the same ones for all three categories
of testing (null, restart, and backup), namely Makefile and set_Makefile in the main verification directory,
Verify. There are two include files, Make.tests that lists all the test directories and Make.dirs that specifies
the directories for the fluids, RELAP5 executable, license file, etc.

The input decks backup-tested are listed in Make.tests. The user may modify this list or override it by
changing the content of the backup list when running the make command. The default setting is that all
decks in the verification test suite are backup-tested.

The principle Makefile links a copy of set_Makefile to each test directory with local name Makefile.
It then invokes those Makefiles in turn to perform the backup testing. Those Makefiles create two copies
of the base case input deck, Base.b.i and Base.bk.i, as listed in Table 5.3.2. Base.bk.i is the original deck,
Base.i, with the 199 card modified with the backall keyword. With backall, the only verification dump is
on the final timestep. Base.b.i is the original deck, Base.i, with the 199 card modified to dump the final
advancement only. Thus the two verification files have the same dumps to compare.

The system has been tested. Initially, nearly all backup problems failed to produce exactly the same
results. All of these cases have been turned in as high priority (level 2) user problems. Many have been
corrected at the time this report is being written. The summary of the user problems is given in Table
5.5.1.

Table 5.5.1. Summary of High Priority Backup User Problems

UP# Title of User Problem Resolution Version Priority Modified

13081 4.1.2t floreg.bk.i Backup deck hangs computer fixed 4.1.2 2 06/20/13

13080 4.1.2t rcpr.i Backup deck hangs computer fixed 4.1.2 2 06/20/13

13079 4.1.2t ans.i backup deck fails on Case 6 4.1.2 2 06/20/13

13078 4.1.2t state.i backup deck fails on Case 7 4.1.2 2 06/20/13

13077 4.1.2 valve.i base and backup cases differ 4.1.2 2 06/20/13

13076 4.1.2 turbine9.i base and backup cases differ 4.1.2 2 06/20/13

13075 4.1.2 todcnd.i base and backup cases differ fixed 4.1.2 2 07/08/13

13074 4.1.2 sphere3.i base and backup cases differ fixed 4.1.2 2 07/08/13

13073 4.1.2 slab3.i base and backup cases differ fixed 4.1.2 2 07/08/13

 58

UP# Title of User Problem Resolution Version Priority Modified

13072 4.1.2 rtsamppm.i base and backup cases differ 4.1.2 2 06/20/13

13071 4.1.2 reflecht.i base and backup cases differ 4.1.2 2 06/20/13

13070 4.1.2 refbunm.i base and backup cases differ 4.1.2 2 06/20/13

13069 4.1.2 pitch.i base and backup cases differ fixed 4.1.2 2 07/08/13

13068 4.1.2 pitch.i base and backup cases differ fixed 4.1.2 2 07/08/13

13067 4.1.2 neptunus20m.i base case differs from backup 4.1.2 2 06/20/13

13066 4.1.2t jetjun.i base and backup cases differ fixed 4.1.2 2 07/08/13

13065 4.1.2t hxco2m.i base and backup cases differ fixed 4.1.2 2 07/08/13

13064 4.1.2 httest.i base and backup cases differ 4.1.2 2 06/20/13

13063 4.1.2t hse.i base and backup cases differ fixed 4.1.2 2 07/08/13

13062 4.1.2t gota27.i base and backup cases differ fixed 4.1.2 2 07/08/13

13061 4.1.2t fwhtr.i base and backup cases differ fixed 4.1.2 2 07/08/13

13060 4.1.2 enclss.i base and backup cases differ fixed 4.1.2 2 07/08/13

13059 4.1.2 eflag.i base and backup cases differ fixed 4.1.2 2 07/08/13

13058 4.1.2 edhtrkm.i base and backup cases differ fixed 4.1.2 2 07/08/13

13057 4.1.2t duklerm.i base and backup cases differ 4.1.2 2 06/20/13

13056 4.1.2 cyl3.i base and backup cases differ fixed 4.1.2 2 07/05/13

13055 4.1.2 backup problems with slight differences fixed 4.1.2 2 07/05/13

13050 4.1.2 rtsampnm.i base case core dumps fixed 4.1.1 2 07/10/13

13030 Restart of neptunus20m produces unreliable information. 4.1.1 2 04/25/13

13029 Jet pump restart reads to end of file w/o finding record. 4.1.1 2 04/25/13

13028 Restart two-phase pump, Case 1, not accurate. 4.1.1 2 04/25/13

13027
fwhtr.i1 reads to the end of the restart file w/o finding
record fixed 4.1.1 2 04/25/13

13026
Restart of varvol2 produces slight difference on final
verification dump 4.1.1 5 04/25/13

13025 Restart of slab3.i produces some unreliable information. fixed 4.1.1 2 04/24/13

13024
refbunm takes different no. of advancements for base
case & restart fixed 4.1.1 2 04/24/13

13023 Failure in reflecht.i1 fixed 4.1.1 2 04/24/13

13022 Slight problem with restart of L2-5-emA 4.1.1 2 04/24/13

 59

5.7 References
5-1 The RELAP5-3D Code Development Team, “RELAP5-3D Code Manual Volume I: Code

Structure, System Models and Solution Methods,” INL-EXT-98-00834-V1, Revision 4.0, Section
8.2, p 8-4, June, 2012.

5-2 The RELAP5-3D Code Development Team, “RELAP5-3D Code Manual Volume I: Code
Structure, System Models and Solution Methods,” INL-EXT-98-00834-V1, Revision 4.0, Section
8.2, pp. 8-3 to 8-4, June, 2012.

5-3 The RELAP5-3D Code Development Team, “RELAP5-3D Code Manual Volume I: Code
Structure, System Models and Solution Methods,” INL-EXT-98-00834-V1, Revision 4.0, Section
3.4, pp. 3-271 to 3-274, June, 2012.

5-4 D. L. Aumiller, G. W. Swartele, J. W. Lane, F. X. Buschman and M. J. Meholic, “Development
of Verification Testing Capabilities for Safety Codes,” Section 8, The 15th International Topical
Meeting on Nuclear Reactor Thermal - Hydraulics, NURETH-15, NURETH15-145, Pisa, Italy,
May 12-17, 2013.

5-5 R. A. Riemke, “Replace the Partial Backup Logic with Full Backup Logic,” Idaho National
Laboratory document R5/3D-04-02 Rev. 0, Mar. 10, 2004.

 60

6. SOURCE CODE
This section describes the coding that implements verification testing. It also includes the actual

coding of new subroutines. In the case of modifications to existing routines, small explanations of
explanation of the changes are given.

The coding was written to isolate the data and calculations from the rest of RELAP5-3D as much as
possible. The module uses only two level modules, intrtype and ufilsmod. Thus it can be built at any point
after those kinds of modules. Any data needed from any other module comes into its subroutines through
call sequences. Any verification-related subroutines that required a significant amount of data from other
modules were made separate from VERIFYMOD.

Further, the interface into RELAP5-3D of the new coding was minimized. Thus very little besides a
call to a verification subroutine and references to verification scalars is used to access the verification
coding from any existing routine. The only exception to this is RDEBUG which was wholly rewritten.

The input coding was written to spot user input errors and give good warning and error messages, as
is consistent with the rest of RELAP5-3D input processing.

Section 6.1 presents the source code for verifymod.F90. Section 6.2 reproduces the source code for
redbug.F. Section 6.3 lists the source code for verfbackup.F

 61

6.1 Module VERIFYMOD
Each internal subroutine sums the number of bytes it writes on the verification file. VERF_LAST

shuts down further writes if the 1 MB limit is exceeded in verfsizlim. Thereafter, only the final write of
each remaining input case may be written to the verification file.

module verifymod
!
! Module associated with verification testing
!
! 1.0 Declarations
!
 use intrtype
 use ufilsmod, only: verifl
 implicit none
!
 real (sdk) :: backtime, beginVerf
 integer (sik) :: caseDmpCnt, dumpStep
 integer (sik) :: verfDumpLeft, verfaction, verfspace = 0
 integer (sik), parameter :: verfsizlim = 1048576 - 1351
 logical :: ljunflag(8), lverify, lvolflag(7)
 character (12) :: compileday, compiletime
 character (64) :: compilehost
!
 type verf
 integer (8) :: rdccrnt, rdcextr, rdcmerr, rdcprop, rdcqual
 integer (8) :: rptair, rptdpr, rptflip, rptjpack, rptpack
 real*16 :: thsolnsum, psum, vfsum, vgsum
 real*16 :: boronsum, qualasum, ufsum, ugsum, voidgsum
 real*16 :: tempsum
 real*16 :: fluxsum, minorsum
 real*16 :: rhsthsum, rhshesum, rhsnksum
 real*16 :: dtsum, errsum, cntrlsum, tripsum
 end type verf
!
 type (verf) :: vrf
!
! 2.0 Data Dictionary
!
! 2.1 Scalars
! backtime = cumulative TIME of previous BACKup
! beginVerf = BEGINning VERiFy cumulative time on which to activate
! -1.0 if integer-trigger used & active-to-transient-end
! caseDmpCnt = COUNT of the number of VERiFication dumps
! compileday = DAY on which the code was COMPILEd
! compilehost= HOSTname of machine on which the code was COMPILEd
! compiletime= TIME at which the code was COMPILEd
! dumpStep = step on which previous verification dump was written
! ljunflag = Logical JUNction FLAG (jefvcahs)
! For Verification Table Property Rows, indicate if a model
! is turned in in the input model during input edit.
! lverify = Logical VERIFY flag
! true - on this timestep, do verify calcs and a dump
! false - do NOT perform verification calculations
! lvolflag = Logical VOLume FLAG (tlpvbfe)
! For Verification Table Property Rows, indicate if a model
! is turned in in the input model during input edit.
! verfaction = ACTION for VERiFication file: user-requested/condition-based
! -1 - Close Verifl
! 0 - Error: set fail flag
! 1 - Open/dump Verifl

 62

! 2 - Open/backup due to air appearance
! 3 - Open/backup due to water packing
! 4 - Open/backup due to velocity flip-flop
! verfSpace = amount of SPACE in bytes left on the verify file
!
! 2.2 Derived Type
!
! TYPE verf
!
! INTEGER DATA
! rdccrnt = number of times the time step was ReDuCed by the CouRaNT
! limit in all volumes since the beginning of the transient.
! rdcextr = number of times the time step was ReDuCed by the state
! EXTRapolation in all volumes since the beginning of the transient.
! rdcmerr = number of times the time step was ReDuCed by Mass ERRor
! in all volumes since the beginning of the transient.
! rdcprop = number of times the time step was ReDuCed by water PROPerty
! error in all volumes since the beginning of the transient.
! rdcqual = number of times the time step was ReDuCed by QUALity adjustment
! in all volumes since the beginning of the transient.
! rptair = total number of time steps RePeaTs due to AIR appearance
! rptdpr = total number of time steps RePeaTs due to PRessure change (Delta)
! rptflip = total number of time steps RePeaTs due to velocity FLIP-flop
! rptjpack = total number of time steps RePeaTs due to Junction water PACKing
! rptpack = total number of time steps RePeaTs due to volume water PACKing
!
! REAL DATA
! boronsum = SUM of BORON densities
! ctrlsum = SUM of all ConTRoL variables
! errsum = SUM of mass residual ratio and ERRor estimate
! fluxsum = SUM of neutron FLUXes
! qualsaum = SUM of QUALities of noncondensAbles
! psum = SUM of ~pressures
! rhshesum = SUM of Heat Equations RHS
! rhsnksum = SUM of Neutron Kinetics system RHS
! rhsthsum = SUM of TH RHS (semi- or nearly-implicit)
! tempsum = SUM of TEMPeratures in all heat structure geometries
! tripsum = SUM of all TRIP â€œtimeofâ € values
! ufsum = SUM of Fluid (liquid) internal energies
! ugsum = SUM of Gas internal energies
! vfsum = SUM of Fluid (liquid) velocities
! vgsum = SUM of Gas velocities
! voidsum = SUM of VOID fractions
!
! 3.0 Internal Subroutines
!
 contains

 subroutine verf_CaseInit (ilowlimit, iuplimit, ncount)
!**
 integer :: ilowlimit, iuplimit
 integer (sik) :: ncount
!
 backtime = 0
 caseDmpCnt = 0
 dumpStep = -1
 ljunflag = .false.
 lvolflag = .false.
 verfaction = 0
 verfDumpLeft = iuplimit
!lverify = ilowlimit <= ncount .and. ncount <= iuplimit .and. verfaction > 0
 lverify = .false.
 call verf_Init

 63

!*****************************
 end subroutine verf_CaseInit

 subroutine verf_Dump (icount, advtime)
!*****************************
! Dump summed information on the verification file
 real (sdk) :: advtime
 integer (sik) :: icount
!
 caseDmpCnt = caseDmpCnt + 1
 verfspace = verfspace + 1305
 write (verifl,2000) caseDmpCnt, icount, advtime
 2000 format (/"Dump",i6, 4x,"Advancement=",i8," time=",1pe12.4)
 write (verifl,2010) "P= ",vrf%psum,vrf%psum
 write (verifl,2010) "Uf= ",vrf%ufsum,vrf%ufsum
 write (verifl,2010) "Ug= ",vrf%ugsum,vrf%ugsum
 write (verifl,2010) "VOIDg=",vrf%voidgsum,vrf%voidgsum
 write (verifl,2010) "QUALa=",vrf%qualasum,vrf%qualasum
 write (verifl,2010) "Boron=",vrf%boronsum,vrf%boronsum
 write (verifl,2010) "Vf= ",vrf%vfsum,vrf%vfsum
 write (verifl,2010) "Vg= ",vrf%vgsum,vrf%vgsum
 write (verifl,2010) "RHSth=",vrf%rhsthsum,vrf%rhsthsum
 write (verifl,2010) "SOLth=",vrf%thsolnsum,vrf%thsolnsum
 write (verifl,2010) "Error=",vrf%errsum,vrf%errsum
 write (verifl,2010) "Temp= ",vrf%tempsum,vrf%tempsum
 write (verifl,2010) "Flux= ",vrf%fluxsum,vrf%fluxsum
 write (verifl,2010) "dtsum=",vrf%dtsum,vrf%dtsum
 write (verifl,2010) "Trips=",vrf%tripsum,vrf%tripsum
 write (verifl,2010) "Cntrl=",vrf%cntrlsum,vrf%cntrlsum
 2010 format (a6,1pe24.16,x,Z32)
 write (verifl,2020) vrf%rdccrnt, vrf%rdcextr, vrf%rdcmerr, vrf%rdcprop, vrf%rdcqual
 2020 format ("Rdc:Crnt,Extrp,Mass,Prop,Qual=", 5i6)
 write (verifl,2030) vrf%rptair, vrf%rptdpr, vrf%rptflip, vrf%rptjpack, vrf%rptpack
 2030 format ("Rpt:Air,DelP,Flip,Jpack,Vpack=", 5i6)
!************************
 end subroutine verf_Dump

 subroutine verf_Header (ctitle, ncase, opnd, ptitle)
!********************
! Write header information on the verification file
 integer (sik) :: ncase
 logical :: opnd
 character (*) :: ctitle, ptitle
! Locals
 integer (sik) :: nncase
!
! 1.0 Initialize
 if (ncase < 0) then
 nncase = -ncase
 else
 nncase = ncase
 endif
!
! 2.0 Output
 if (.not.opnd) then
 write (verifl,"(a,3x,a)") trim(ptitle(1:24)), trim(compilehost)
 write (verifl,1000) trim(compileday), trim(compiletime)
 1000 format ("Time compiled: ",a,x,a)
 write (verifl,1001) ctitle(82:102)
 1001 format ("Date and Time of run: ",a,x,a)
 verfspace = 56
 endif
 write (verifl,1002) nncase, trim(ctitle(1:80))

 64

 1002 format (/"Case ",i2,2x,a)
 verfspace = verfspace + 9 + len_trim(ctitle(1:80))
 return
!************************
 end subroutine verf_Header

 subroutine verf_Init
!********************
! Initialize components of verf derived type, the sum scalars.
 vrf%vfsum = 0.0
 vrf%vgsum = 0.0
 vrf%qualasum = 0.0
 vrf%boronsum = 0.0
 vrf%ufsum = 0.0
 vrf%ugsum = 0.0
 vrf%voidgsum = 0.0
!
 vrf%tempsum = 0.0
 vrf%fluxsum = 0.0
!
 vrf%thsolnsum = 0.0
 vrf%rhsthsum = 0.0
 vrf%rhshesum = 0.0
 vrf%rhsnksum = 0.0
!
 vrf%dtsum = 0.0
 vrf%errsum = 0.0
!
 vrf%cntrlsum = 0.0
 vrf%tripsum = 0.0
 vrf%rdccrnt = 0
 vrf%rdcextr = 0
 vrf%rdcmerr = 0
 vrf%rdcprop = 0
 vrf%rdcqual = 0
 vrf%rptair = 0
 vrf%rptdpr = 0
 vrf%rptflip = 0
 vrf%rptjpack = 0
 vrf%rptpack = 0
 return
!************************
 end subroutine verf_Init

 subroutine verf_Last (cputime)
!**********************
! Write final information of current input case on the verification file
 real (sdk) :: cputime
!
 verfspace = verfspace + 46
 write (verifl,'(/"CPU Time=",1pe24.16," size",i8)') cputime,verfspace
!
! Enforce 1 MB size restriction
! The verification file may not exceed this size (except for final time step)
 if (verfspace > verfsizlim) then
 verfaction = -1
 lverify = .false.
 close (unit = verifl)
 endif
 return
!**************************
 end subroutine verf_Last

 65

 subroutine jefvcahs (jc0, jc1, jc2)
!***********************************
 integer (sik) :: jc0, jc1, jc2
 ljunflag(1) = ljunflag(1) .or. btest(jc0,25)
 ljunflag(2) = ljunflag(2) .or. btest(jc1,15)
 ljunflag(3) = ljunflag(3) .or. btest(jc1,2)
 ljunflag(4) = ljunflag(4) .or. ibits(jc0,17,2) > 0
 ljunflag(5) = ljunflag(5) .or. .not.btest(jc0,4) .or. btest(jc2,10)
 ljunflag(6) = ljunflag(6) .or. btest(jc0,8) .or. btest(jc1,29)
 ljunflag(7) = ljunflag(7) .or. btest(jc0,9)
 ljunflag(8) = ljunflag(8) .or. ibits(jc0,12,2) > 0
!***********************
 end subroutine jefvcahs

 subroutine tlpvbfe (imap, vct)
!******************************
 integer (sik) :: imap, vct
 if (.not.btest(vct,1)) then
 lvolflag(1) = lvolflag(1) .or. btest(vct,2)
 lvolflag(2) = lvolflag(2) .or. btest(imap,28)
 lvolflag(3) = lvolflag(3) .or. .not.btest(vct,7)
 lvolflag(4) = lvolflag(4) .or. .not.btest(imap,9)
 lvolflag(5) = lvolflag(5) .or. btest(vct,30) .or. btest(imap,27)
 lvolflag(6) = lvolflag(6) .or. .not.btest(imap,13)
 lvolflag(7) = lvolflag(7) .or. btest(vct,1)
 endif
!***********************
 end subroutine tlpvbfe

end module verifymod

 66

6.2 RDEBUG Subroutine

Since so much of RDEBUG changed, it is simplest to present the entire subroutine. It processes all
“199” input cards. It has been augmented to include:

 “199 verify”

 “199 noverify”

For “noverify,” there are no other words on the card and it simply closes the verification file and shuts off
output further output to it on subsequent input cases. For “verify” there are up to four words on either type
of card.

The format 199 card format is:

“199 verify W2 W3 W4”

W2 is Action, W3 is Start time, advancement number, and W4 is End time or advancement.

 W2 = Action has the values: dump, backair, backpck, backvel, or backall.

 W3 = Start = timestep number (integer) or cumulative time (floating point) on which to
activate the Action.

 W4 = End = Timestep number (if W3 and W4 are integers) on which to terminate the action.
If W3 is real, W4 is the number of advancements to stay active. Special value -1 means to
deactivate on the final timestep.

To have the verification dump only on the final step, set the start time greater than the end time.

 subroutine rdebug
!
! DESCRIPTION
! Read the input for debugging a subroutine.
! NOTE: Only DTSTEP at this time.
! Co-Authors: George Mesina, Richard Wagner
! Cognizant: George Mesina
! Created: July 31, 2008
! Updated: 11/18,12 (GM), 3/18/13
!
! DECLARATIONS
 use cctlmod
 use ctrlmod
 use gnrlmod, only: ctitle, ptitle
 use inputmod
 use testmod
 use ufilfmod, only: filsch
 use ufilsmod
 use verifymod
!
 implicit none
! LOCALS
 real*8 :: rscr(4)
 integer l3a(10)
 integer (8) :: iscr(4)
 integer i, n2, n3, n4, n5
 integer, save :: indvrf=15, ios

 67

 character (8) cscr(4)
 equivalence (cscr(1),iscr(1), rscr(1))
 data l3a /199, 0, 1, 4, 0, 1, -1, -1, 0, 0/
!
! DATA DICTIONARY
!
! cscr Character SCRatch. contains the input line form INP.
! iscr Integer SCRatch. contains the input line form INP.
! i Index for do loops
! l3a INP instruction array
! (1) = RELAP5-3D input card number (identification number)
! (2) = final (last) card number. Zero means only one card.
! Positive means card numbers must be consecutive.
! Negative means they don't have to be consecutive.
! (3) = minimum number of expected (allowed) arguments on card
! (4) = maximum number of expected (allowed) arguments on card
! (5) = skip factor (for storage in output array)
! (6) = on input, index of first word in output array.
! on output, -1 if error on card
! n>0 (number of words placed on output array
! (7+) = Code for describing the type of input
! 0 means integer
! 1 means floating point
! -1 means character
! |n| > 1 repeat count
! n < -1 repeat starts at beginning for each new
! card (See manual.)
! n > 1 repeat continues from previous card.
!
! Executable Code
!
! Initialize
 ctest = 'null'
 l3a(6) = 1
 call inplnkn (l3a(1), n2, n3, n4)
 if (n4 == 0) return
!
! Obtain 199-card input from INP storage
! Determine if it is invalid or valid - 4 words of proper typing
 call inpmod (l3a,n3,n4,n5,0)
 if (n5 == 0) then
 call inp2n (iscr, l3a)
 else
! if (l3a(6) < 0) then
 l3a(6) = 1
 l3a(9) = 1
 call inp2n (iscr, l3a)
 endif
 if (l3a(6) < 0) then
 fail = .true.
 else if (l3a(6) == 0) then
 return
 else if (trim(cscr(1)) == "noverify" .and. l3a(6) /= 1) then
 fail = .true.
 write (output,'("0******** Two input items are required on",
 & " a 199 no-verify card.")')
 else if (trim(cscr(1)) == "verify" .and. l3a(6) < 3 .or.
 & l3a(6) > 4) then
 fail = .true.
 write (output,'("0******** Four input items are required on",
 & " a 199 card.")')
 else
!

 68

! Valid 199 card format
! Word 1 in {verify, noverify, debug}
! Word 2 in {backall, backair, backpck, backvel, dump}
! Word 3 = (REAL) activation cumulative time
! (INT, ACT<5) attempted advancement on which to activate
! (INT, ACT<5) successful advancement on which to activate
! Word 4 = (INT) > 0 shutdown Advancement
! (INT) -1 shutdown at end of transient
! Summary
! (W3, W4) = (R, I) start cumulative time, number of steps to take
! = (R, -1) start cumulative time, shutdown at transient end
! = (I, I) start and end Advancement (see action value)
! = (I, -1) start Advancement, shutdown at transient end
!
! Translation into variables
! beginVerf = BEGINning VERiFy cumulative time on which to activate
! -1.0 if integer-trigger used & active-to-transient-end
! ilowlimit = Integer LOWer LIMIT to activate verification
! set to zero if Word 3 is REAL.
! iuplimit = Integer UPper LIMIT to shutdown verification
! -1 if active-to-transient-end
 ctest = cscr(2)
 iuplimit = iscr(4)
 if (iuplimit > 0) then
! W4 > 0
 if (l3a(9) == 1) then
! W3 real
 beginVerf = rscr(3)
 ilowlimit = iuplimit + 1
 else
! W3 int
 beginVerf = -1.0
 ilowlimit = iscr(3)
 endif
 else
! W4 < 0
 ilowlimit = 0
 beginVerf = -1.0
 endif
 call to_lower(cscr(1))
 select case (trim(cscr(1)))
 case ("dtstep")
 call proc_debug
 case ("verify", "noverify")
 call proc_verify
 case default
 fail = .true.
 write (output,'("0******** Invalid 199-card keyword.") ')
 end select
 endif !l3a
 return
 contains
 subroutine to_lower (string)
 character*(*) string
 integer :: i, icode, lacode, uacode, uzcode
 lacode = ICHAR('a')
 uacode = ICHAR('A')
 uzcode = ICHAR('Z')
 do i = 1, LEN_TRIM(string)
 icode = IACHAR(string(i:i))
 if (icode >= uacode .and. icode <= uzcode) then
 string(i:i) = CHAR(icode + lacode - uacode)
 endif

 69

 end do
 return
 end subroutine to_lower
 subroutine proc_debug
! *********************
 read (ctest(3:4),"(a2)") Aset
 read (ctest(1:2),"(i2)",iostat=ios) testNo
 if (ios /= 0) then
 write (output,'("0******** rdebug: Invalid Test Number ",
 & a2)') ctest(1:2)
 fail = .true.
 else
 if (testNo<0 .or. testNo>17 .or. Aset/="A1" .and. Aset/="A2")
 & then
 write (output,'("0******** Quitting. Bad test code: ",a4)')
 & ctest
 fail = .true.
 endif !testNo
 if (ilowlimit<1 .or. ilowlimit>iuplimit) then
 write (output,'("0******** Invalid Advancement Limits ",
 & 2i12)') ilowlimit, iuplimit
 fail = .true.
 endif !ilowlimit
!
 if (testNo < 10) then
 ctest(1:2) = cbasic(testNo)
 ctest(3:6) = " "
 else
 ctest(1:2) = "a1"
 if (testNo < 14) then
 ctest(3:4) = cbasic(testNo-8)
 ctest(5:6) = " "
 else
 ctest(3:4) = cbasic(testNo-12)
 ctest(5:6) = "d1"
 endif
 endif !testNo
 endif !ios
 return
! *************************
 end subroutine proc_debug
 subroutine proc_verify
! **********************
! Process the verification file input cards, set data accordingly, and
! open or close the verification file. Legitimate options:
! 199 verify dump start stop (start=real or int, stop=int)
! 199 verify backair
! 199 verify backpck
! 199 verify backvel
! 199 noverify
!
!
! DECLARATIONS - Local
 implicit none
 integer :: openerr
 integer (sik) :: nvdump
 logical :: opnd, there
!
! Executable Code
!
! 1.0 Initialize
 nvdump = 0
 opnd = .false.

 70

 there = .false.
!***
 call verf_CaseInit (ilowlimit, iuplimit, nvdump)
!***
 inquire (file = filsch(indvrf), opened = opnd, exist = there)
!
! 2.0 Process Verify or Noverify
!
! 2.1 "199 Noverify"
! Deactivate verification and close verify file
 if (trim(cscr(1)) == "noverify") then
 inquire (file = trim(filsch(indvrf)), opened = opnd)
 verfaction = -1
 if (opnd) close (unit = verifl)
 else
!
! 2.2 "199 verify"
!
! 2.2.1 Interpret VERIFY "action" keyword
 select case (trim(ctest))
 case ("dump")
 verfaction = 1
 case ("backair")
 verfaction = 2
 case ("backpck")
 verfaction = 3
 case ("backvel")
 verfaction = 4
 case ("backall")
 verfaction = 5
 case default
 verfaction = 0
 fail = .true.
 write (output,2000) ctest
 2000 format ("0******** Invalid 199 verify card action value: ",a8)
 end select
 endif
!
! 2.2.2 Open Verification file
 if (verfaction > 0) then
 if (opnd) then
! Already open - just write header
 call verf_Header (ctitle, ncase, opnd, ptitle)
 else if (.not. (opnd .or. there)) then
! Not open, non-existent - open
 open (unit = verifl, file = filsch(indvrf),iostat=openerr)
 if (openerr > 0) then
 write (output,*) "0******** Cannot open verify file:",
 & trim(filsch(indvrf))
 fail = .true.
 else
 call verf_Header (ctitle, ncase, opnd, ptitle)
 endif
 else if (there .and. .not.opnd) then
! Not open, existent.
! According to the "zen of RELAP" this should be an error. However,
! code users requested that the file be overwritten rather than have
! RELAP5 fail with an error message.
 write (output,2010) trim(filsch(indvrf))
 write (*,2010) trim(filsch(indvrf))
 2010 format ("0$$$$$$$$ WARNING: Existing verifification file ",
 & "overwrite requested for file: ",a)
 open (unit = verifl, file = filsch(indvrf))

 71

 call verf_Header (ctitle, ncase, opnd, ptitle)
 endif
 endif
 return
! **************************
 end subroutine proc_verify
 end subroutine rdebug

 72

6.3 Subroutine VERFSUM

This subroutine performs all the L1 norms that are recorded on the verification file in accordance with
Equation (2.4.1). One internal subroutine for each group of data: Thermal Hydraulic, Temperature,
Neutron Kinetics, Trips, Control Variables, and Code Statistics. There is a logical function subprogram
that activates the subroutines, through a logical variable, only on the final step of the transient and on user
requested steps.

 subroutine verfsum (typesum)
!
! Description: Sum important data for the verification file and write
! the data at the end of the final time step and user
! requested steps.
! Cognizant: Dr. George L Mesina
! Created: Nov 13, 2012
! Updated: Nov 18, 2012
!
! Declarations
! Global
 use asdmod, only: s_stscpu
 use ctrlmod, only: done, dt, fail, imdctl, iroute, ncount,
 & timehy
 use junmod, only: jct, njct
 use ufilsmod, only: output, verifl
 use verifymod
 use volmod, only: vlm, nvlm
! Local
 implicit none
 real (sdk), save :: totaltime = 0.0
 character(*) typesum
!
! Executable Code
!
! 1.0 Summations
!
! 1.1 Perform requested summation
 select case (typesum)
 case ('convar')
 call verfsum_cnv
 case ('hydro')
 call verfsum_th
 case ('kinetic')
 call verfsum_kin
 case ('lverify')
 lverify = verf_time (timehy, ncount)
 if (lverify) call verf_Init
 case ('restep')
 call verfsum_restep
 case ('rhsth')
 call verfsum_rhsth
 case ('temps')
 call verfsum_temps
 case ('thsoln')
 call verfsum_thsoln
 case ('trip')
 call verfsum_trips
 case default
 fail = .true.

 73

 done = -100
 end select
!
! 1.2 Cumulative time sum
 if (done /= 0 .or. fail) then
 totaltime = totaltime + s_stscpu
 endif
!
! 2.0 Dump to Verification File
! When all data is collected, the keyword in TYPESUM is RESTEP, dump
! data for this advancement if:
! * did not previously dump on this advancement (dumpStep contols this)
! OR
! * it is the final advancement (DONE is non-zero or FAIL).
 if (typesum == 'restep' .and. (dumpStep/=ncount)) then
 if (verfaction > 0 .and. (fail .or. done/=0)) then
 call verfsum_cnv
 call verfsum_th
 call verfsum_thsoln
 call verfsum_rhsth
 call verfsum_kin
 call verfsum_restep
 call verfsum_temps
 call verfsum_trips
 call verf_Dump (ncount, timehy)
 call verf_Last (totaltime)
 dumpStep = ncount
 else
 if (lverify .and. verfspace < verfsizlim) then
 if (4 >= verfaction .and. verfaction >= 1
 & .and. timehy >= beginVerf) then
 call verf_Dump (ncount, timehy)
 dumpStep = ncount
 verfDumpLeft = verfDumpLeft - 1
 endif
 endif
 endif
 endif
!
 return

 contains

 subroutine verfsum_cnv
! **********************
! Sum of Control Variables
 use cnvmod, only: ncnvr, cnvr
 integer :: i
!
 vrf%cntrlsum = 0.0
 do i = 1, ncnvr
 vrf%cntrlsum = vrf%cntrlsum + abs(cnvr(i)%arn)
 enddo
! **************************
 end subroutine verfsum_cnv

 subroutine verfsum_kin
! **********************
! Sum of neutron fluxes
 use k3allmod, only: ismeth, ngrk, nxytmax, nz
 use k3dmod, only: sw
 use kinmod, only: rk_opt, rk_pow
#ifdef use_phisics

 74

 use instmod, only: need_instant
#else
 logical :: need_instant = .false.
#endif
 integer i, j, k
!
 vrf%fluxSum = 0.0
 if (.not.btest(rk_opt,7)) then
! Point
 vrf%fluxSum = rk_pow
 else if (ismeth == 1 .or. need_instant) then
! Krylov
 do i = 1, nxytmax
 do j = 1, nz
 do k = 1, ngrk
 vrf%fluxSum = vrf%fluxSum + abs(sw(i,j,k))
 end do
 end do
 end do
 endif
 return
! **************************
 end subroutine verfsum_kin

 subroutine verfsum_restep
! *************************
! Count time step reattempts caused by repeat and reduction conditions,
! error measures, and time data
 use asdmod, only: as1, as2, s_stsdtn, s_stsdtx
 use ctrlmod
!
 implicit none
 integer airsum, dprsum, packsum
 integer flipsum, jpacksum
 integer crntsum, extrsum, merrsum, propsum, qualsum
 integer mk
!
! 1.0 Repeats w/o dt halving
! 1.1 Volume-based
! Sum up air appearance, pressure change, and water packing repeat
 airsum = 0
 dprsum = 0
 packsum = 0
 do mk = 1, nvlm
 airsum = airsum + abs(as1(mk)%strap1)
 dprsum = dprsum + abs(as1(mk)%strdp1)
 packsum = packsum + abs(as1(mk)%stvpk1)
 end do !mk
 vrf%rptair = airsum
 vrf%rptpack = packsum
 vrf%rptdpr = dprsum
!
! 1.2 Junction-based
! Sum up water packing and velocity flip/flop repeats
 jpacksum = 0
 flipsum = 0
 do mk = 1, njct
 jpacksum = jpacksum + abs(as2(mk)%stjpk1)
 flipsum = flipsum + abs(as2(mk)%stjff1)
 end do !mk
 vrf%rptjpack = jpacksum
 vrf%rptflip = flipsum
!

 75

! 2.0 Reduction and reattempt
! Sum up quality, extrapolation, mass error, fluid property, and
! material Courant violations that cause reduction and repeat
! *** For restart, only use value since lage major edit, such as
! strcl1, but not cumulative, such as strcl2.
 qualsum = 0
 extrsum = 0
 merrsum = 0
 propsum = 0
 crntsum = 0
 do mk = 1, nvlm
 crntsum = crntsum + abs(as1(mk)%strcl1)
 extrsum = extrsum + abs(as1(mk)%strex1)
 merrsum = merrsum + abs(as1(mk)%strte1)
 propsum = propsum + abs(as1(mk)%strpe1)
 qualsum = qualsum + abs(as1(mk)%strxl1)
 end do !mk
 vrf%rdccrnt = crntsum
 vrf%rdcextr = extrsum
 vrf%rdcmerr = merrsum
 vrf%rdcprop = propsum
 vrf%rdcqual = qualsum
!
! 3.0 Time and error data
! vrf%dtsum = s_stsdtn + s_stsdtx + dt + dthy + dtkn
 vrf%dtsum = dt + dthy + dtkn
 vrf%errsum = abs(errmax) + abs(emass/max(tmass,tmasso,1.0e-20))
 return
! *************************
 end subroutine verfsum_restep

 subroutine verfsum_th
! *********************
! Sum the primitive variables of the governing equations across all
! hydrodynamic systems for the verification file:
! Pressure, phasic internal energies, noncondensable quality, gas void
! fraction, boron density, and phasic velocities.
! NOTE: The scalar summands are QUADRUPLE PRECESION to avoid roundoff.
 integer :: i
!
 vrf%psum = 0.0
 vrf%ufsum = 0.0
 vrf%ugsum = 0.0
 vrf%qualasum = 0.0
 vrf%voidgsum = 0.0
 vrf%boronsum = 0.0
 do i = 1, nvlm
 vrf%psum = vrf%psum + abs(vlm(i)%p)
 vrf%ufsum = vrf%ufsum + abs(vlm(i)%uf)
 vrf%ugsum = vrf%ugsum + abs(vlm(i)%ug)
 vrf%qualasum = vrf%qualasum + abs(vlm(i)%quala)
 vrf%voidgsum = vrf%voidgsum + abs(vlm(i)%voidg)
 vrf%boronsum = vrf%boronsum + abs(vlm(i)%boron)
 end do
!
 vrf%vfsum = 0.0
 vrf%vgsum = 0.0
 do i = 1, njct
 vrf%vfsum = vrf%vfsum + abs(jct(i)%velfj)
 vrf%vgsum = vrf%vgsum + abs(jct(i)%velgj)
 end do
 return
! *************************

 76

 end subroutine verfsum_th

 subroutine verfsum_thsoln
! *************************
! This only calculates the norm for (bpi,bpj) = (1,1).
! *** This could be expanded to other TH systems in the future.
! The sourcem array is overwritten by subsequent systems. Save
! sourcem array in verfsol array for recalculation at the end of
! transient.
 use bpmod
 real*16 :: solnsum
 integer :: i, nvar
 logical :: doNorm
!
 nvar = msiz(1)%nequ(1)
 if (typesum=='thsoln'.and.bpi==1.and.bpj==1) then
 verfsoln(1:nvar) = sourcem(1:nvar)
 endif
 if (done /= 0 .or. fail) then
 solnsum = 0.0
 sourcem(1:nvar) = verfsoln(1:nvar)
 do i = 1, nvar
 solnsum = solnsum + abs(sourcem(i))
 end do
 vrf%thsolnsum = solnsum
 else if (typesum=='thsoln'.and.bpi==1.and.bpj==1) then
 solnsum = 0.0
 do i = 1, nvar
 solnsum = solnsum + abs(sourcem(i))
 end do
 vrf%thsolnsum = solnsum
 endif
!GLM! call manualvrf('thsoln')
 return
! *****************************
 end subroutine verfsum_thsoln

 subroutine verfsum_rhsth
! *********************
! This only calculates the norm for (bpi,bpj) = (1,1).
! *** This could be expanded to other TH systems in the future.
! Save the RHS in verfrhs array for recalculation at the end of
! transient.
 use bpmod
 real*16 :: rhsth
 integer :: i, nvar
 logical :: doNorm
!
 nvar = msiz(1)%nequ(1)
 if (typesum=='rhsth'.and.bpi==1.and.bpj==1) then
 verfrhs(1:nvar) = sourcem(1:nvar)
 endif
 if (done /= 0 .or. fail) then
 rhsth = 0.0
 sourcem(1:nvar) = verfrhs(1:nvar)
 do i = 1, nvar
 rhsth = rhsth + abs(sourcem(i))
 end do
 vrf%rhsthsum = rhsth
 else if (typesum=='rhsth'.and.bpi==1.and.bpj==1) then
 rhsth = 0.0
 do i = 1, nvar
 rhsth = rhsth + abs(sourcem(i))

 77

 end do
 vrf%rhsthsum = rhsth
 endif
!GLM! call manualvrf('rhsth')
! *************************
 end subroutine verfsum_rhsth

 subroutine verfsum_temps
! ************************
! Sum heat structure geometry temperatures array.
 use hsgmod, only: nhtsgs, htg
 integer :: cols, its, mm, nh
! Array %httmp has subscripts; (Rows, Cols, Old/New)
! * where 0=Old, 1=New
 vrf%tempsum = 0.0
 do nh = 1, nhtsgs
 cols = htg(nh)%geo%htnmpt
 do its = 1, htg(nh)%geo%htnusr
 do mm = 1, cols
 vrf%tempsum = vrf%tempsum + abs(htg(nh)%httmp(its,mm,1))
 end do !mm
 end do !its
 end do !nh
 return
! ****************************
 end subroutine verfsum_temps

 logical function verf_time (advtime, icount)
! ***********************************
! Determine if verification sums should be calculated this advancement
! CONSIDERATION
! This depends on the type of verification.
! * On forced backups, only the successful advancements are considered.
! * Otherwise, "ncount" total advancements are used.
 use asdmod, only: s_strdc1, s_strdc2
 use idtmod, only: dtsmallest
 use testmod, only: ilowlimit, iuplimit
 use ufilsmod
 integer icount
 real (sdk) :: advtime
! Local
 integer (sik) :: jadv
 real (sdk), parameter :: eps = 1.0e-12
! jadv = number of successful advancements (if verfaction is 5)
! = total advancements (if 0 < verfaction < 5)
!
 verf_time = .false.
 if (verfspace < verfsizlim .and. verfaction > 0) then
 if (beginVerf < 0.0) then
 if (verfaction == 5) then
 jadv = icount - (s_strdc1 + s_strdc2)
 else
 jadv = icount
 endif
 verf_time = ilowlimit <= jadv .and. (jadv <= iuplimit .or.
 & iuplimit == -1)
 else if (advtime >= beginVerf - dtsmallest/4 .and.
 & verfDumpLeft > 0) then
 verf_time = .true.
! ADD initialization of iupcount = iuplimit (+1)
 endif
 endif
! **********************

 78

 end function verf_time

 subroutine verfsum_trips
! ************************
! Sum the trips timeof values (other choices would mix units).
 use trpmod
 real (sdk) :: xl1, xl2
 integer :: i
!
 vrf%tripsum = 0.0
!
! 1.0 Variable Trip TIMEOF values
 do i = 1, ntrpv
 if (iroute/=1 .or. iroute==1.and.btest(imdctl(1),6)) then
 vrf%tripsum = vrf%tripsum + abs(trpv(i)%trptim)
 else
 vrf%tripsum = vrf%tripsum + abs(trpv(i)%trptimss)
 endif
 end do
!
! 2.0 Logical Trip TIMEOF values
 do i = 1, ntrpl
 if (iroute/=1 .or. iroute==1.and.btest(imdctl(1),6)) then
 vrf%tripsum = vrf%tripsum + abs(trpl(i)%trptim)
 else
 vrf%tripsum = vrf%tripsum + abs(trpl(i)%trptimss)
 endif
 end do
 return
! ****************************
 end subroutine verfsum_trips

 end subroutine verfsum

 79

6.4 Subroutine VERFBACKUP

Short subroutine VERFBACKUP controls the backup on every advancement logic.

subroutine VerfBackup
!
! Set backup flags at the hydrodynamic system (or loop) level to force
! backups at a given time or advancement based on verfaction.
! Do not force a fake backup if succes is already 5.
! Do not force a fake backup more than once at a given time.
!
 use intrtype
 use ctrlmod, only: ncount, succes, timehy
 use idtmod
 use lpdmod, only: lpd
 use testmod, only: ilowlimit, iuplimit
 use ufilsmod, only: output
 use verifymod, only: backtime, beginVerf, verfaction, verfDumpLeft
!
 implicit none
 logical :: lforce, ltimeAdv
!
! Executable Code
!
 ltimeAdv = (timehy > backtime + dtsmallest/4)
 backtime = timehy
 if (ltimeAdv .and. succes /= 5) then
 lforce = ltimeAdv .and. verfaction==5
 if (lforce .or. timehy >= beginVerf .and. verfDumpLeft > 0 .or. &
 ilowlimit <= ncount .and. ncount <= iuplimit) then
 select case (verfaction)
 case (2)
 lpd(1)%airap = 1
 write (output,'("Forcing air appearance backup on step",i9)') ncount
 case (3)
 lpd(1)%lpackr = 1
 lpd(1)%wpack = 1
 write (output,'("Forcing water packing backup on step",i9)') ncount
 case (4)
 lpd(1)%vlflip = 1
 write (output,'("Forcing velocity flip-flop backup on step",i9)') ncount
 case (5)
 lpd(1)%airap = 1
 write (output,'("Forcing backup (2 forward / 1 back) on step",i9)') ncount
 end select
!
! succes = 5
 lpd(1)%lsuces = 5
 endif
 endif
!
 return
 end subroutine VerfBackup

 80

6.5 Minor Modifications of Existing Subroutines
Modifications to existing routines were kept small to reduce the intrusion of new code which is and

mostly tangential to the main purpose of those subroutines. In the past programmers have made extensive
changes to existing routines, often surrounded by pre-compiler protection, this interferes with both the
readability and understandability of the subroutine’s operations. Therefore, modifications were kept to a
minimum.

Temporarily for the convenience of the recipients the changes are marked within the source code with
the comment:

!!!! verification !!!!

The comment occurs both above and below the verification coding. This marking via comments will not
persist in the main line of RELAP5-3D. It should be removed after the coding is introduced.

6.5.1 Subroutine DTSTEP Modifications

Modifications to subroutine DTSTEP are complicated by the need to perform differently in restart
and non-restart.

A User Problem was discovered and recorded when the ANS problem was restarted at a timecard
endpoint rather than at a point in the middle of a time interval, while all the timecards except those ending
before the restart time were omitted. Due to a combination of programming issues, the timestep from the
timecard ending at the restart point was used on restart. The code took 10x as many steps as needed. It
nonetheless arrived at the final time with EXACTLY the same verification dump, except for number of
timesteps and timestep sum.

To correct this, DTSTEP handles initialization for restart differently from a new problem, both in its
sections 1 and 4. It also makes a call to VERFSUM just before exiting in its section 11. The changes are
located as follows:

Declarations (in alphabetical order)
 use verifymod
Section 1.3, 3rd line
 if (verfaction > 0) call verfsum ('lverify')
Immediately above 11.4.2
! 11.4.1.2 Verification Dump
 if (verfaction > 0 .and. succes /= 5) then
 call verfsum ('restep')
 endif
!GLM! call manualvrf ('total')

6.5.2 Subroutine HYDRO Modifications

Modifications to subroutine HYDRO are made to sum primitive variables and to implement backup
testing. A conditional call to VERFSUM is made just above the call to HTFINL. A conditional call to
VERFBACKUP is made immediately after each of the velocity routines VFINL and VIMPLT. Note that
these calls are not made on the first attempted timestep due to certain algorithmic difficulties. The
changes are located as follows:

Declarations (in alphabetical order)
 use verifymod , only: lverify, verfaction, vrf
Section 1.3, 3rd line
! Verification file:
 if (lverify) then
 if (verfaction > 0 .and. succes /= 5) then
! Sum primitive vars of governing equs on non-backup
 call verfsum ('hydro')

 81

 endif
 endif

6.5.3 Subroutine IEDIT Modifications

Modifications to subroutine IEDIT are limited to creating information on the output file to aid the
building of the verification “features-decks” matrix. The changes are located as follows:

Declarations (in alphabetical order)
 use verifymod
After enddo below format 2008
! Verification File calculations and output
 if (lverify) then
 do i = 1, nvlm
 call tlpvbfe (vlm(i)%imap(1), vlm(i)%vctrl)
 enddo
 write (output,*) "Volume flags on in any volume"
 if (lvolflag(1)) write (output,*) "vol-flag on: thermal strat"
 if (lvolflag(2)) write (output,*) "vol-flag on: mixture level"
 if (lvolflag(3)) write (output,*) "vol-flag on: water packing"
 if (lvolflag(4)) write (output,*) "vol-flag on: vertical strat"
 if (lvolflag(5)) write (output,*) "vol-flag on: bundle"
 if (lvolflag(6)) write (output,*) "vol-flag on: wall friction"
 if (lvolflag(7)) write (output,*) "vol-flag on: equilibrium"
 endif
! End of Verification Coding
Above return statement
! Verification Coding
 if (lverify) then
 write (output,*) "Junction flags on in any junction"
 do j = 1,njct
 call jefvcahs (jct(j)%jc, jct(j)%jcex, jct(j)%jcex2)
 end do
 if (ljunflag(1)) write (output,*) "jun-flag on: jet junction"
 if (ljunflag(2)) write (output,*) "jun-flag on: modified PV"
 if (ljunflag(3)) write (output,*) "jun-flag on: CCFL"
 if (ljunflag(4)) write (output,*) "jun-flag on: HSE"
 if (ljunflag(5)) write (output,*) "jun-flag on: choking"
 if (ljunflag(6)) write (output,*) "jun-flag on: abrupt area"
 if (ljunflag(7)) write (output,*) "jun-flag on: homogeneous"
 if (ljunflag(8)) write (output,*) "jun-flag on: momentum flux"
 endif
! End of Verification Coding

6.5.4 Subroutine INITDATA Modifications

Modifications to subroutine INITDATA initialize variables for verification processes. There is a call
to a verification module subroutine and setting verifl to 18 and adding verify to array filsch properly. The
changes are located as follows:

Declarations (in alphabetical order)
 use verifymod
Below call k3tctlinit
 call verf_CaseInit (0, 0, 0)
In “c Data for ufiles common return statement”
 data input/11/,output/12/,rstplt/13/,stripf/14/,plotfl/15/,
 & sth2xt/16/,jbinfo/17/,eoin/51/,verifl/18/,coupfl/19/,inpout/20/,
 & nodpower/21/,force/23/,fluxdata/24
In “c Data for ufilef common.”
 data filsch/'ftb1','indta','outdta','plotfl','restrt','stripf',
 & 'jbinfo','null','cdffile','coupfl',' ','0','dumpfil1','dumpfil2',
 & 'verify',' ','r5-r5f',' '

 82

6.5.5 Subroutine RTSC Modifications

Modifications to subroutine SYSSOL are limited to using the new module, initializing the variables
that hold the sum, and calling the summation routine, VERFSUM. Usage of module VERIFYMOD was
added to the declarations section. Initialization occurs at the very top in the initialization section of
SYSSOL. The call to VERFSUM was placed after the call to the solver subroutines. The changes are
located as follows:

Declarations (in alphabetical order)
 use verifymod, only: lverify
Among the “Local variables” add k2res to end of integer statement.
 integer i, ix, j, k0, k1, k2, k2res
Above “tsc(j)%tsppac = ior(ior(ishft(k1, 12), ishft(k0, 6)), k2)”
! Verification File Info
 if (lverify) then
 k2res = mod(k2, 16)
 if (k2res == 3) write (output,*) "Advancement tt=3"
 if (k2res == 7) write (output,*) "Advancement tt=7"
 if (k2res == 11) write (output,*) "Advancement tt=11"
 if (k2res == 15) write (output,*) "Advancement tt=15"
 endif
! End of Verification File Info

6.5.6 Subroutine SYSSOL Modifications

Modifications to subroutine SYSSOL are limited to using the new module, initializing the variables
that hold the sum, and calling the summation routine, VERFSUM. Usage of module VERIFYMOD was
added to the declarations section. Initialization occurs at the very top in the initialization section of
SYSSOL. The call to VERFSUM was placed after the call to the solver subroutines. The changes are
located as follows:

Declarations (in alphabetical order)
 use verifymod, only: lverify , verfaction, vrf
Above MA18 comment.
 if (lverify) then
 call verfsum('rhsth')
 endif
Above “Solver measures”
! Verification
 if (lverify) then
 call verfsum ('thsoln')
 endif

6.5.7 Subroutine TRAN Modifications

Modifications to subroutine TRAN are limited to using the new module and calling the summation
routines in the appropriate places. Usage of module VERIFYMOD was added to the declarations and
calls to VERFSUM were placed after calls to subroutines that produced the arrays to sum for the verify
dumps. TRAN calls VERFSUM at the top of the time loop to set lverify (which is only true when the
array sums should be calculated). It also calls VERFSUM after the calls to trip, hydro, rkin, and convar.
The changes are located as follows:

Declarations (in alphabetical order)
 use verifymod, only: lverify , verfaction, vrf
Below 200 continue.
 if (verfaction > 0) call verfsum ('lverify')
Below “call trip”
 if (lverify) call verfsum ('trip')

 83

Below “call hydro”
 if (lverify) call verfsum ('temps')
Above “End of advanced reactor kinetics section”
 if (lverify) call verfsum ('kinetic')
Below “call convar”
 if (lverify) call verfsum ('convar')

6.5.8 Subroutines UFILFMOD and UFILSMOD

In UFLIFMOD, the default name of the verify file is loaded into the fname array at position 15.

In UFLISMOD, the variable verifl is created, documented and given the value 18.

Declarations (in alphabetical order)
 integer (sik) :: coupfl,eoin,inpout,input,jbinfo,output,plotfl,
 & restrt,rstplt,statfl,sth2xt,stripf,tty,nodpower,force,
 & fluxdata,ikdtunit,verifl
Comments
! verifl File number for the VERIfication FiLe
Below “jbinfo = 17”
 verifl = 18

